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ABSTRACT

This dissertation studies several issues involved with implementing

adaptive array processors for signal detection and estimation. The

basic structure which is examined is the estimator-correlator processor.

It establishes a fundamental connection between detection and estimation

theory, and solves the detection problem for the generalized exponential

class of signal and noise distributions.
0

System modeling and identification represent two of the central

issues studied in this dissertation. Stochastic operator theory and

results from functional analysis allow these problems to be solved " %

for a wide variety of random scattering media. The models are based

on matrix representations of bounded, linear operators.

The integral kernels needed to implement the estimator-correlator

are expressed in terms of Karhunen-Loeve expansions. We assert they

provide the t- Jrqtical means to solve the processor equations, give

considerahle insight into their mathematical structure, and establish

0F
a link between theory and practical realization. Calculating the %-%.i

conditional mean of the channel output requires modeling and identify- "-'

., %,

ing the stochastic scattering channel. A Karhunen-Loeve expansion of

its random Green's function representation is a fundamental approach to ..*. .i

stochastic system modeling and identification.
l. ,P

The numerical issues involved with implementation are studied in

detail. We show how the processor equations can be solved using robust,

state-of-the-art numerical algorithms. The estimator branch is imple-

ented with the CS decomposition. Several interesting relationships

%
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between the Karhunen-Loeve basis and canonical matrix decompositions

are established.

In summary, ideas from system modeling, identification, detection

and estimation theory, and numerical analysis are combined in order to

implement optimal array processors for signal detection and estimation.
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Chapter 1

INTRODUCTION

Problem Statement and Its Importance -

1.1.1 General Problem Statement

This dissertation studies several issues arising in implementing

adaptive array processors for signal detection and estimation. We shall

focus our attention on detecting signals that have propagated through

randomly time-varying scattering media. The stochastic nature of the-0

medium causes the returned signal energy to be a random process spread

with respect to range, angle, and Doppler. These effects will be

modeled by linear, bounded stochastic operators acting on the trans- ,

mitted signal. An operator theoretic approach to the detection problem

provides the means to solve for the optimal processor for a wide class - -

of propagation and scattering channels.

One can show that the optimal array processor structure can be

implemented in an "estimator-correlator" structure (Figure 1-1) [1] [2].

In other words, the array measurements are directed into two branches,

each of which is described by a matrix filter acting on the data. The

matrix filters Q(.,.) and G(',') are found by solving the following . .

integral equations:

f (t, u) 2(t,, z) du 6(t - z) I (1.1-1)
T

f R 1 (t, u) G(u, z) du R (t, z) (1.1-2)
-Y"

T
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where IN(-, is the covariance kernel of the measurement noise, Ry(.,')

is the covariance kernel of the returned signal alone, Rl(.,-) is the

covariance kernel of combined returned signal plus noise, T is the :

observation interval, and I is the identity matrix. The lower branch

containing G(',') will be called the estimator branch, because it calcu-

lates an optimal estimate of the backscattered signal based on the array . A

data r(','). The upper branch will be referred to as the inverse filter

branch, because it represents the inverse of RN(-,.). The outputs of

each branch are correlated to form the scalar-valued likelihood ratio Z.

In principle, there is no reason why the optimal detector could not

be implemented after solving these equations. However, several

problems will become apparent as we consider in detail how to,.

implement this processor in a practical working environment. Solving .,

%
the equations is so difficult that suboptimal schemes are almost always

used.

1.1.2 Specific Problem Statement - N

The specific issues which shall be studied in this dissertation can -

be summarized as follows:

(1) To study the relationships among detection theory, estimation
theory, stochastic system modeling, and system identification .
within the context of the estimator-correlator processor.

(2) To establish the connections among Karhunen-Loeve expansions, %
system models, generalized Fourier series, canonical matrix
decompositions, and generalized eigenvalue matrix decompositions.

(3) To exploit the preceding results in order to implement the
estimator-correlator structure with state-of-the-art computational ,
algorithms. .. % . "

P' %

.% ... '%

dr" d- ,%" .. e -,." ,"



1.1.3 Importance of the Problem

Most adaptive array processor designs are based on oversimplified"'

descriptions of the backscattering object and transmission medium. They

are called point scatterer models, and although they assume random

amplitude and phase, their essential features are deterministic. To be

more precise, the backscattered signal is represented as a time- and

Doppler-shifted version of the original signal which arrives at the

array from one specific direction. The return can be interpreted as a

point in a three-dimensional space parameterized by time delay, Doppler %LON

shift, and arrival angle. Implementing these processors is

s traight forward. I "

However, a deterministic treatment of transmission channel effects

is rarely an adequate representation of reality. Since many uncon- - - .* .

trolled factors determine real wave motion, stochastic descriptions are

usually more appropriate. Stochastic media cause the returning signal

energy to be distributed, or spread, over random intervals of time delay

(range), Doppler, and arrival angle. One can tLnk of the returned 0

energy as distributed over a volume in the previously defined parameter ....

space. The total signal energy available for processing is recovered by

integrating over the entire volume.

This discussion leads to the importance of this work. When a

processor designed for point channels is employed in a stochastic PIP

environment, only a fraction of the returned signal energy is actually S

processed. As a result, the overall performance of the detector is

significantly reduced. • 
, ,- --

:-.i"."--€
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Total signal energy processed determines array processor perform- ,

ance. In order to maximize performance, all available signal energy 0

must be used. This is why optimal structures must be implemented,

especially in low signal-to-noise ratio environments. The preceding

comments provide the underlying motivation for the work presented in

this dissertation.
%

1.2 Problem Formulation

A schematic diagram of the working environment is shown in

Figure 1-2. A signal s(-) is transmitted into the medium over a finite

time interval. s(-) shall be called the probing signal, and we will

assume its characteristics are known and subject to our control. If a . ."

reflecting object is present in the medium, then energy from the probing

signal scatters off the object in different directions. A collection of

sensors called the array is immersed in the medium and is designed to be

sensitive to the signal energy reflected from the object.

All signals not related to the backscattered probing signal

represent undesired interference, and will be called noise. It has two

components: system noise which arises within the processor, and

ambient noise which enters the system through the array. The ambient S % -

noise is spatially distributed, but not necessarily isotropically. We

shall combine the internal and external noises into a single process

modeled by a zero-mean, Gaussian distributed random vector.

The total output of the array is measured over a time interval T NN

and a spatial aperture A. (X-r objective is to design a processing

system which takes the array data and decides if backscattered signal

%. .•'

b-'b'i ,. 'b~b_,i' _: -- -- ".v.'. '-'---'----', "-'_'."-" : - - -'.--. -".--".,' ' '"-- .
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energy is absent or present in the measurement, in other words, if the

object is absent or present.

This problem can be formulated in mathematical terms as follows.

The array output shall be denoted by r(,). It is a complex-valued ,%

vector stochastic process, and the i-th element of r(t, w) represents

the measured value of the i-th sensor in the array at time t.

The background and measurement noise entering the processing system .

will be denoted by n(.,). n(.,') is a zero-mean, Gaussian distributed

stochastic process. •- . -

The energy backscattered off the reflecting object will he denoted

by ts( ), or by v( , ). This process is inherently random even though ®

s(-) is known; therefore, it must he modeled as a stochastic process as .. ".-

well. 1() represents the effects of the scattering object and propa-

gation channel. We shall refer to them genericallv as the channel,"

even though many transformations may actually have taken place. J(.) is

much more than a convenient shorthand notation. It will he discussed

at length later.

Assuminv the mediun and array are linear, when harkscattered enerjv -..5,..-

is present in the meaSurement: ,

r( t , ) is( t + n( t , ) -- t -

When the object is absent:

r(t It (t ). -. ,

%@%.

" " . . .

.5. t "

"w'p

. 5,. °

• "
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In practice, we do not know which form of r(.,') is correct. The

process of deciding between these alternatives in a statistically

meaningful sense is called signal detection. Implementing the structure ".'W0%

%

which solves the detection problem is the basic issue addressed in this,'-

dissertation.

1.3 Basic Approach to '-he Problem ,.'

Let us begin by describing the measurement model in greater detail,

since it represents a central part of the overall approach to the pro-

hlem. We stated that t(.) represents the effects of the scattering , .dN%

channel; however, we have yet to define t(.) in mathematical terms, or

to motivate its usefulness in this context. '.

f(.) is a bounded, linear, stochastic operator which will represent

the overall effects of the medium. This approach is nor new. It was

suggested by Middleton thirtv vears ago [3] and reintroduced more

recentlv by Sohie [4]. However, we are the first to apply stochastic

operator theory svstematicallv to the channel modeling and

identification problem.

A stochastic operator theoretic approach is useful for several rea-

sons. First of all, it is clear that deterministic represontations of ... . .,.

real scattering media are totally inadenuate. Stochastic transforma-

tlo.,s musst he used in order to develop realistic models for the channel ..

effects, and stociastic ,inerator theory provides the means to do so. In

this dissertation, the stochastic operator modeling problem will he -'. ...

studied in Rome it-tail. Also, althoih an operator theoretic approach -. '"

to the problem is actual lv quite abst ract, it allows the detect ion

.4 .. .4 4- .. 4, -4. -. 4. *. .- .4 ,.4"*.**%* ., *
.. . . .. . . . % . . ..%*% " , " *4*" -- '" ". - - .. 4. -" . . . -- - " - -". 2'-; . '--.'- -. '?;ii2v .
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problem to be solved generically for a wide class of stochastic media,

bypassing a detailed mathematical analysis of many special cases. J.

Moreover, this allows theorems and ideas from functional analysis and

Hilbert space theory to be used to obtain new results and new insights

into the modeling issues.

Now that the nature of £() has been described in detail, let us
.. .. . .

turn our attention to solving the detection problem. We call upon the

array processing system to make a judgement concerning the nature of

r(-,). This problem is distinguished by the facts that the processor
-- 

% % .

has only limited knouledge of the backscattered signal, and that random

noise always obscures the signal to a varying degree. Hence, it is

logical to conclude that the required judgement must be a statistical

inference based on results from statistical decision theory.

The signal detection problem is equivalent to a statistical hvpo-

thesis testing problem, in which the hypothesis that noise alone is Of.

present is to be tested against tne hypothesis that signal and noise are

present. These alternatives are expressed in statistical terms by:

HI: r(t, w) = Ls(t) + n(t, )

HP: r(t, w) - n(t, j) %

where H 1 and HO are abbreviations for hypothesis one and the null hvpo-.,

thesis respective]v.

The solution to the detection problem is well known and can be

found in any one of several references [1] [3). The optimal test, or

)1 tirial processor, is prescribed by ca;lculatin a rtal-%'alued statistic

.. %



in

of r( •,•) called the likelihood ratio, and comparing this result to a , r

predetermined number y. If the likelihood ratio exceeds this threshold,

we assert that Hl is true; otherwise, we assert that the null hypothesis

is correct.

The processor can be implemented using several equivalent struc-

tures. We have already described the "estimator-correlator" realiza-

tion, in which the non-causal conditional mean estimate of ts(.) is

correlated with a f-.'-red version of the data r(.,.) tc obtain the

likelihood ratio. This is the basic structure that will be studied in .

. %%

this dissertation.

There are several reasons why we have chosen the estimator- , 'p

correlator structure. First, it establishes a basic connection between

detection theory and estimation theory. This can be seen by comparing

this structure with the structure solving the known signal in Gaussian

noise detection problem (Figu e 1-3). Clearly, the two are similar. .

The estimator-correlator treats the conditional mean estimate as If it

were deterministic in the subsequent correlation operation.

While the preceding discussion points out a theoretically elegant

connection between the estimator-correlator and other processors, there %

ire more fundamental reasons why an estimator-correlator realization is

useful. They can be seen by examining the nature of the solution in - ",.-

greater deta. .%..

greater detail. ° ""

O

•.. % *- *

. , ", . •
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Solving Equations (1.1-1) and (1.1-2) for G(*,•) and Q(.,.) pre- .

supposes perfect a priori knowledge of covariance kernels R(.,-),

Ry( ) and Rl(.,.). However, in problems of practical interest, this

information is seldom available in advance. This clearly suggests

attempting to implement the processor using adaptive signal processing

techniques; indeed, adaptation is the key to optimum receiver

implementation [5]. The estimator-correlator structure is particularly

useful from this point of view.

We will show that RN(-,') and RI(",") can be estimated directly

from array data. On the other hand, Ry(',') can not be obtained

directlv, since the return is(-) is always obscured by background and

measurement noise. If a priori knowledge of Ry(',') is unknown or

incomplete, another means must be found to estimate its salient features

in conjunction with the detection process.

This aspect of the problem will be approached from a system

modeling and identification point of view. The stochastic transrission
, ,, -

media, represented generically by linear stochastic operator t(.), can

be interpreted as an unknown linear system. By exploiting results from

functional analysis and stochastic operator theory, relationships

between Ry(',') and £(.) suitable for digital signal processing 0
V IV

applications can be derived. In particular, the formulations are based -..

on the matrix representation of £(.) and the spectral representation of

Integrating these results into the estimator-correlator 0

structure is straightforward and establishes a fundamental connection .- " .. ,.:, ,,.

'S .- .:.

•,-~ . . ,.,..

-S-":'-"i
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among detection theory, estimation theory, system modeling, and system

identification theory.

In this dissertation, we will also study the implementation problem

in some detail. The theoretical analysis and practical implementation

are both based on Karhunen-Loeve expansions of the received data. Of 6

course, the use of series expansions as a theoretical tool in such

disciplines as detection theory and estimation theory is well estab-

lished, and they provide a great deal of insight into the nature of the 4

optimal processor. However, we assert that they are the key to . -

implementation as well. Going beyond formal manipulation of infinite

series, we show how these representations lead to structures which 0

can be implemented with state-of-the-art computational algorithms.

The results establish relationships among Yarhunen-Loeve expansions,

matrix decompositions such as singular value decompositions and OR •

factorizations, and generalized eigenvalue problems.

In conclusion, our approach to the problem is based on the

estimator-correlator canonical structure. Within this framework, the

interrelations among system modeling, stochastic operator theory,

identification, and orthonormal expansions will be established. The

solutions to the implementation problem are based on Karhunen-Loeve • -

series expansions. They lead to structures that can be realized through

robust numerical algorithms.%

%

r""

p,%p , .,,, , , b- '.,W,,.' % % " .,,' ' . , %, ,,'--%"% -. "%"% ".• • " % ' "'"' - ,.
"

" "
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1.4 Review of Previous Work

The estimator-correlator structure was first studied by Price [61

in the context of the Gaussian signal in Gaussian noise detec- I..?

tion problem. He noticed that the solution could be interpreted as a -

modification of the standard "correlation" receiver which solves the

known signal in Gaussian noise detection problem. The modification is .- . ..

elegant and intuitive. Specifically, the optimal estimate of the signal

process is used as if it were deterministic in the subsequent -

correlation operation.

Later, Kailath [7] and Esposito [81 studied this structure in .,,' 2

more detail. Both argued that it should be optimum or close to optimum

for detecting random signals (not necessarily Gaussian) in additive

Gaussian noise. However, their results must be interpreted carefully.

For example, although Esposito was able to show that an "estimator- •

correlator" structure exists for a broad class of random signals, it is

not possible to interpret the signal estimate as "optimal" in a

meaningful sense except for Gaussian signals. Moreover, since the 0

signal process estimates can not be determined uniquely, they actually

have little intrinsic value except in the context of the receiver

structure itself. -

A few years later, Kailath returned to the problem of detecting
, -. ' - a.

non-Gaussian stochastic signals y(",-) in additive Gaussian noise [91,. "

and proved that the log-likelihood functional has the form: 0

Z(r) f r(t, w) (t, w) dt f - t W,1  dt (1.4-1)

T T

.. ..*

*
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where y(.,.) is the causal conditional mean estimate of y(',') given

r(.,'), assuming that HI is true. Equation (1.4-1) shows that an

estimator-correlator interpretation of detection can be generalized to

encompass a broader class of signals. However, the "correlation"

integral has to be defined as an Ito stochastic integral, making

practical implementation of (1.4-1) problematical. Furthermore, Kailath

pointed out that this result was not merely a question of rigor.

Other definitions for the correlation integral yield detector structures

inconsistent with previously obtained results.

More recently, Schwartz extended these ideas to discrete time

problems [10J, and in addition, demonstrated that the structure is

optimal when the data come from generalized exponential distributions, a ..

broad and important class of distributions. During this repearch,

the author generalized his results to the vector measurement case.

Once again, a conditional mean estimate of the signal is the central

part of the structure, and it appears in a correlation integral used to ..- .
•. -,.,0

calculate the likelihood ratio. However, evaluating the likelihood •
... -. _

ratio is quite difficult, and as Schwartz himself noted, implementing

this generalized estimator-correlator structure would not be a simple . .

task. •

Actually, the importance of these results relates to the insights ,

they give into optimal receiver structures. They show that the

estimator-correlator interpretation of detection can be generalized to 0

many different of signal and noise models. In other words, much of the

.- ..*

" -% .. 4%

.1

... P ..n- % *.
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intuition provided by an estimator-correlator interpretation of the

solution to the Gaussian signal in Gaussian noise detection problem

carries over to more general situations.

The optimum and adaptive array processing problems have received a

great deal of attention for nearly three decades, and consequently,

there is an abundance of literature in these areas. It is beyond the

scope of this dissertation to present a detailed review of the work %

already accomplished in these fields; however, we shall briefly point

out several references of special interest.

Van Trees studied optimal array processing techniques in a classic

report published two decades ago [2]. In particular, he examined the S

Gaussian signal in Gaussian noise detection problem, and derived several

equivalent forms of the optimal structure, including the estimator-

correlator. Other landmark papers were written by McDonough [11], Bryn 0

[12], Edelblute and his colleagues [131, and Cox [14]. Adaptive array %

processing has been discussed in Monzingo and Miller [15], Haykin [16],

Hudson (171, and Widrow and Stearns (18]. An extensive bibliography of 0

current work in this area is contained in a new book edited by Sibul P. ,

[ 19 ]"- .-. .'

1.5 Overview of the Dissertation

Chapter 2 introduces the concepts, definitions, notation, and

theorems that will be used in subsequent chapters. In particular, the

Karhunen-Loeve expansion is defined, and a method of calculating its

basis from an arbitrary orthonormal basis is introduced.

In Chapter 3, the channel modeling problem is studied. Our %OA,

approach is based on matrix representations of bounded, linear opera-

-'.
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tors. The results have interesting implications in several disciplines, ,.

including the theory of non-stationary stochastic processes. 0

Solutions for 0(',') and G(.,-) are derived in Chapter 4. Spectral

representations for RN(,), Ry(a,),nd RI( , ) are used to solve the

processor equations. Indeed, we will argue that this approach is not

only a useful theoretical tool, but is also the key to adaptive

implementation. The relationship between £(-) and Ry(-,.) is estab-

lished and incorporated into the estimator-correlator structure.

It turns out that the relationship between t(.) and Ry(',') which

is developed in Chapter 4 is not particularly convenient from an , 4.,.

0
implementation point of view. Therefore, in Chapter 5, the stochastic

identification problem is examined in further detail. Simultaneous .4.4

diagonalization of the input and output covariance kernels is used to .

obtain a simplified relationship.

The numerical issues associated with adaptive implementation are e

studied in Chapter 6. Our results establish several interesting ,,

connections among canonical matrix decompositions and the Karhunen- .4 .4

Loeve expansions of G(',') and 0(',). In addition, the CS decompo-

sition is introduced as a numerically stable method for obtaining G(',')

from array measurements.

In Chapter 7, numerical results are presented and evaluated. We 4'.''

consider an example of considerable practical interest; namely, detec-
0

tion in multipath propagation channels. Finally, conclusions and

recommendations for further research are given in Chapter 8. e

0

JP -. N.
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Chapter 2

MATHEMATICAL BACKGROUND

2.1 Introduction and Overview

This chapter introduces the concepts, definitions, notation, and

theorems that will be used in subsequent chapters. Results will be

stated, hut proofs and derivations will he omitted. The interested

reader can find careful developments of Hilbert space theory and linear %- A

operator theory in one of several standard texts [201 [21] [22].

We begin bv establishing the mathematical structure in which sig- " S .

nals are represented as elements in separable Hilbert spaces. This 
%

framework allows us to represent signal processing operations as

bounded, linear operators defined over a Hilbert space of interest.

Next, the problem of representing deterministic and stochastic signals

is examined. We introduce generalized Fourier series expansions for %-.

both deterministic and stochastic signals, and the Karhurn-Loeve expan- %. ..

sion is defined. A new method of calculating the Karhunen-Loeve basis

is introduced. Finally, we discuss deterministic and stochastic opera-

tors, and demonstrate their usefulness in the context of this work.

2.2 Hilbert Spaces _

2.2.1 Definition 4..

A Hilbert space is defined as a complete inner product space [20].

An inner product space is a linear vector space endowed with a S

functional which maps the product space H x H onto the set of complex

scalars. The functional is called the inner product, and will be

% ~

• % %

I 
.e .
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denoted by < *. ) This inner product induces a norm onto H which is %.,. •

given by the definition

jxii < xx >12 (2.2-1) %

for all x in H.

Inner product spaces are complete if every Cauchv sequence con-

verges to a point in the space.

Only separable Hilbert spaces shall be studied in this disserta-

tion. A Hilbert space is separable only if an orthonormal basis exists

in the space.

2.2.2 Examples e

The set of all N-tuples or complex scalars is a Hilbert space with

inner product

N
< x,v > = i (2.2-2)

for all x and y in H. This elementary Hilbert space is very useful in

signal processing applications for representing finite-dimensional

deterministic signals. .'L;". N

The space of all square-integrable functions defined on an inter- .-' -,*

val (a, h) of the real line can he shown to he a separable Hilbert space

[20]. In signal processing, this could represent all possible finite- %

energy waveforms received over a finite time interval T or spatial ". N

aperture A. In these cases, a suitable inner product is

. 2.%

* 4

. .• '. N.

.* *.r t 4 ; ; % X -; . * -4 ' -. .*4 . -'-* * - -' / . . -. * . .. . .. . . ... . . . . . . . . , . ... . . . P . . . . - ". .- - . ' : , , :
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< x, v > "x(t)* "'(t) dt (2.2-3) .%, , '

Tf a received signal i:; more appropriately represented as a sto- op

chastic process, a useful inner product definition is:

p * "p .- *.

%
< x,v > = " E~ x(t , v*(t , )) dt 2.2-4) . %./ ,{

,%-%...'*

Various combinatio.ns (f purely temporal, purely spatial, deterministic, .*"'.*

,r tochas ic si na ls (an e chosen , a rd clearly , a lar g'e ntmber o t . .

secial cases can e Studied in a common framework.

2. 3 D~eterministic Signal Representations :~'.i!_

2.3. 1 ourier eries""' " ""

Next, consider the problem of obtaining nmerical representat ions

for signals belonging to a separable Hilbert space H. Since we ire ,nlv [ .'"/

considering these Hilbert saces, it is possible to find an orthonormal'. .-..
^-%' .. '

asis { k) such that every element of H has the representation %,* ° .':.

a
k  k

kI
z %

BT definition the orthonormalt ststem nek is called an orthonormal, -

basis for 1, and each complex scalar xk  is called a Fourier c,,efficient ;",'.'-,

of x. The Fourier coefficients are directly related to x through a

simple inner product operation:

*0

%.. %% %%
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that *r any t E T, x(t, is a random variable. A Atochastic vector

process is an N-dimensional vector whose components are stochastic

processos; that is rr-. ./N

I x x, I

where xi(. is a stochastic process for 1 ,2, N. A complex-

value,! st )chast 1 c process z( - is a special case (,t a two-d i mensi, nal

stochasti," vv tor process:

+~
/ ( t , .. = x~ t , ) +i iv ( t , . ( 2 .- - ) , % - '

., . ..
.T nd .

S.-'.i i tit --

Two particular t,,rms f the index set T are importnt. !f T is a

Seouence .tj, t,, tj, ... , then x( , ) is called a discrete-time

t.Ichl~i- rrcss. ,n the o)ther h;and, if T is an interval ,t the real

line, c , is al lei :i continu,,i-time r-chastic process. ,I this

iss r!it t,, m .'t - i I1I have the sccasion to use hoth t ves ot stochasti,- * % .

=. .°;°

7 1f 1 1 r e t, n t i t 1 7s .i i Kr i n e n- e v Xr x a ns I s TI

The r:,ris init in .t stochasti pr ocess, is actually 1ite

0-
ih t r i,. is an ,inc untahle ,l lectim ot measurable tuncti.ns .ms.'-

, ne . , ,i 'n pr,,ha hi Ii tv ;pace. - represent at j on mi)re iii tahl ..

!,,r ',im ri.1'a alciculit i,)ns is needed. %

A\nv , t c ha,;t c roess x' d I le nd on t he vpr od uct pa c v x

.it . t Ii , i , ar,-intevrable covariance kerne ( " ) an hr,

'X;~ ~ ~ ~ v', ( e n e r.'el~ g i ;ed( F,)ir ie r v r t es • , , ,

d..
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x(t' X) (W) ( t 2.4-3),'.

where i( is an orthonormal basis, and

Xl(W) - < x, i >

for all i [221. The functional < •  > is the standard inner product

defined over the space of interest. The series coefficients {xi(')} are

random variables whose numerical values depend on the particular reali-

, '* 
4

zatton j F .,' -. ,•,-%,

Fuation (2.4-3) can be thought of as a decomposition, in which a

function of two variables is expressed as a sum of products of functions '

of one variable. These decompositions are familiar from the theory of

partial differential equations, and their significance in this context .

is essentiallv the same. Since the basis functions {¢i( are o'-,...

deterministic, we can replace the studv of an uncountable set of

stochastic processes {x(",")} bv a countable set of random variables

ixi(-)}. 'Ioreover, the ideas from Hilbert space theory can be applied

this representation provided the inner product functional is chosen e

,i pp ro0pri a t cI V.

Equation (2.4-3) is a generalized Fourier series, hence any corn-
'." a. <'.'

plete orthonormal basis ( spanning L9(a, b) can be used. However,

1r.e series Is important enough to warrant a name. This representation

Is called the Karhunen-Ioeve orthonormal expansion f 25] [261 of x(.,.),
.. * . o'.. -.

ind its itsefulness can he explained as follows. If the ,nique Karhunen-

,<.,-., ... ,

0

%" %" -- -o

W-p.

* ... a'% . =

-a...-. a, ~ .. ~ ~ a. %* % ~ * ~ *a ./ %a ,
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Loeve basis is used, a nice "double orthogonality" results. The basis

functions are orthonormal: * - ,.

f ¢i(t) **(t) dt = 6 (2.4-4)

T 11

and so are the expansion coefficients:

x(W) x.()} x) (2.4-5)

The basis providing for properties (2.4-4) and (2.4-5) can be found bv

solving the integral equation

(x)S (t )  R (t, u) si(u) du (2.4-6)

where Rx(t, u) = E{x(t, W) x*(u, w)) is the covariance function of k-.

process x(r).

Another important result is Mercer's Theorem [221, which states %

that any positive definite, Hermitian, square-integrable kernel k(.,.)

can he expanded in a series representation:

k~~)= (k) jt " "'%

k(t,s) =(t) O(s) (2.4-7)

(k1 1 . %

where i ) and (') are the eigenvalues and eigenfunctions of ,p./..

k(','). This is the spectral representation for k(.,.), one which is . V ev

particularlv convenient for numerical calculations. Since covariance
. %

' .. -.- ..
. . .1*.

•. -.'. .

0

'.-,. .-- .

4 , -1

2 Z ZZ .;. ,. . . . :, . * 7. : : * ¢ 7,,? ,: " , ,.','.j,, #2.2, i .;'...0
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kernels meet the preceding conditions, they can be expanded in this%%

form.

* 0

2.5 Calculating the Karhunen-Loeve ExpansionA

2.5.1 Derivation%

The nice properties of the Karhunen-Loeve representation can be

exploited to simplify the structure of the optimal processor. However,

the computational problem involved with solving Equation (2.4-6) for the

basis functions is difficult, and limits the practical applications 0 0
% N~ %~ V N

of this approach. Another means of calculating the Karhunen-Loeve J. r

expansion from arbitrary Fourier series representations would be very

useful. 0.,J~
.4 %44-. '4

Let us demonstrate how this can be accomplished. Although the

following derivation is for scalar stochastic processes, the results can

easily be generalized to the vector case.

Suppose a random process x(-,-) is expanded in terms of an arbi- V. 4

trarv orthonormal basis:%
*. w

The coefficients (xi(w)1 are not necessarily orthogonal:0
d' r i

E{xi(w) xj*(w)) rij (2.5-2)
%44~44

Next, write the covariance kernel Rx(-,) in terms of Equation (2.4-3): 0

Rtu) E{x(t,Lu) X*(uw))*

%~%* %%*%*
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-f E X x(W) ( )[ x (W) (D (u)]*
i=l i~ 01 1 j-1

.

= E j l xi(W) x.(w) i.(t) 'j(t)} (2.5-3)

Since the Fourier series converges to x(",") in the mean-square sense,
% . "

the expectation operator and the double sums can be interchanged [251:

R (t,u) = E{xi(W) x (W)} i (t) D*(u) . .

(t) .(2.5-4) . ...-
i=l j= 1 i 1 -

The double sum is conviently written in vector-matrix notation: ",'

x(t,u) p H(r ) _x ±(u) (2.5-5)

where% 
%

(tRx(t) = D t) (t) ... T (2.

and R.x is the infinite matrix of correlations. It is easy to show that

R~x is Hermitian, which implies that R~x has a unique eigenvalue decompo- ' "'."-,,

sition [221: ".-,"

*; .' %J ".

__x =UA' UH  (2.5-6)

4- ** .* .. %

P%.4 .

%

.-..- ;- :p
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Then Rx(',') can be written

Rx(t,u) = Pl(t) RX O(u)

Sk(t) U A' 1H D(u)

= k x k(U) (2.5-7)

The {?k(')} functions are a linear combination of the {ik()} basis:

,.

ik(t) = u* * (t) (2.5-8)

They are orthonormal:

S(t) p(t) dt =f f I ui ( (t)J]I u* P (t)]*dt

T T m=l n=1 "

CO

= f1 U. € (t) 4 *(t) dt

T m=1ln=1 imJn m n I

u u f t) 4,(t) dt

L ~im in n

m=1 n=l T

u • •' --

z u* . = 6 . j" ' " "
ml im im i j

since the rows of U are orthogonal. Furthermore, the {pk()} functions

are complete, since each is a linear combination of a complete ortho-

normal basis. Therefore, the { k()} set is a complete orthonormal "

*W~ ~ C ~ • , q .,"*-&.: .-

J .V.bb

W' V '°f'
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basis, and since the basis which diagonalizes the matrix representation P e

of Rx(',.) is unique, the functions are the Karhunen-Loeve basis, the 0

representation (2.5-7) is the spectral representation of Rx(',-), and

(x)
the parameters {(X ) are the eigenvalues of integral equation (2.4-6).

k %~

In principle, this allows the Karhunen-Loeve basis and expansion

coefficients to be obtained from an arbitrary expansion, provided the

second order statistics of its Fourier coefficients are known. The - --- ,

Karhunen-Loeve basis is calculated with Equation (2.5-8), and the •

uncorrelated expansion coefficients are given by the transformation

X"(W) = U11 x(W) (2.5-9)
-Kb

where xK(.) and x(-) are column vectors containing the expansion
-Kb

coefficients. This transformation decorrelates the coefficients, since

H HU () x
E{XKL() .. ..XKL() = HE{x(w) xH (M)}U diag [(x) A (x)

i -w 41,(" U 1 2

In Chapter 6, we will show how to calculate the expansion directly from -.

data with numerically stable algorithms. 0

2.5.2 Example .;Y.

This examnle is based upon a measurement model used frequently by

Nolte and his colleagues [27] [28]. Consider a time-limited stochas-

tic process measured over the interval (-To/2, To/2). Then x(-,-) can

be expanded into the Fourier series

7

• . j 4°"-",

* 4
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x(t,w) x n M~w e jwo0ft (2.5-10)P0
n

where

X)(W)2 x(t,w)e -o dt

In order to simplify the representation of x(-,), they made the addi-

tional assumption that x(-,-) is essentially bandlirnited to ±Lwo

radians /sec. Then%

x(t,W) = x Mwe 0fl (2.5-11)
n=L n

n= L

Of course, the expansion coefficients {x,(-)} are correlated. Can the

Karhunen-Loeve eigenfunctions and expansion coefficients be obtained

from Equation (2.5-11)? -

The covariance operator Rx(-,) is j

L L
R x(t,u) = {x(t,w) x*(u,w)} =E{ x~k(w) xk(t) [ x x(W) X (t)])

k=-L X.-L

L 11
- ~ k E{x (W) x*(w)} X (t) X*(u)

k=-L Z=-L k 2. k 2

L L k -w.
-% E{x k(W) X X(w)} e ot e o (2.5-12)

k=-L 2.=-L2..
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In vector-matrix notation, the Hermitian form (2.5-12) is given by

Rx(t'W) = KT(t) Rx K*(u) (2.5-13)

%.

where

T t iW Lt jw Lt

(t fe 0 e 0

is a M2 + 1) x I column vector, and .

R = Efx(w) xH(w)1 (2.5-14)

is the covariance matrix of the (2L, + 1) Fourier coefficients. Perform- .%.

ing an eigenvalue decomposition of Rx gives

R.xx j Ax LH (2.5-15)

and substituting (2.5-15) into (2.5-13) leads to the result

Rx(t'ti) = J(t) U Ax UH *(i) (PT(t) Ax ±*(u) (2.5-16)

It is easy to see that:

Uu T _K(U) (2.5-17)

Rewriting (2.5-16) in terms of a sum yields:

2-n+ 1*.

R (t,u) 0 (t) O()(2.5-18)
x n n n(u

n=1I

where n is the nth element of the column vector a.,and moreover,

nt,~

16

01%
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T,n(t) = UT X(t) ,.-.'...d .¢%.

is a linear combination of the complex exponential terms. Equation

(2.5-18) is the result; namely, it is the spectral representation of .

Rx(",.). Since the spectral representation is unique, the functions %

{n(')} are the Karhunen-Loeve basis, and the Karhunen-Loeve expansion S

of x(',') is

2N+ 1
x(t,W) = xKb(W) 4n(t) S

n=1

The {xK()} coefficients can be obtained directly from (2.5-10) by a , .
KL .

linear transformation:A

X (w) = U x(W)

where

(W)= [x() X ()IT

and

x(M) -- x (W) . . . X_ (w)IT
L L.

The covariance matrix Rxx can be estimated from measured data by

averaging over several sets of measurements. This procedure will be

discussed in Chapter 6..'

%

%- .%
5' 5--5 *%.5.
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2.6 Deterministic and Stochastic Operators . .. .

2.6.1 Deterministic Operators P

Given Hilbert spaces HI and H 2 . A function L(-) which maps Hl into 'V '

H 2 is called a linear operator if, for all x and y in HI, and complex

scalars a:

L(x + y) = L(x) + L(y)

L(ax) = aL(x)

For convenience, we will write Lx instead of L(x). We will often write , .

Lx(t) or Lx(t,w) for x belonging to L2 (deterministic signals) or

L2 x :- (stochastic signals) respectively. Since systems of practical

.W "interest are stable in the bounded-input, bounded-output sense [29], we .

need only be concerned with bounded linear operators. Mathematical

representations for bounded linear operators shall be discussed in the

next chapter.

2.6.2 Stochastic Operators and Their Representations -.

Clearly, deterministic descriptions of many signal transformations %. ,

encountered in practical problems are inadequate. For example, wave

propagation through realistic scattering media is described by partial %

differential equations whose coefficients are stochastic processes.

Obviously, deterministic operator representations of these transforma- '-

tions are insufficient, and more general representations based on %.

probabilistic notations are required.

A stochastic operator 1(') is a mapping defined over a Hilbert

space H which is indexed with respect to a variable w belonging to a

**" ..%%.1
J..

",--
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probability space (Q, F, P) [4]. An example of a linear stochastic

operator defined over CN is an N x N matrix whose elements are random %

0
variables. w could represent the value of an unknown physical quantity, P

such as the velocity of wave propagation in a medium.

A useful representation for stochastic operators defined over L2 is

the random Green's function representation. This description can be

justified on physical grounds since one can demonstrate that solutions , -"--

to the stochastic wave equation are written in this form [301 [31).

Furthermore, models for range spread, Doppler spread, and double spread

channels can also be expressed as random Green's functions [1].

A random Green's function representation for 1(.) is given by:

y(t, W) = fx(t, W) = f h(t, T, W) x(r, w) dT (2.6-1)
-ccS

The random Green's function h(,,) is the impulse response function " "

for a linear stochastic system, and is a generalization of the impulse

response function for a linear, time-variant deterministic system.

This description of the medium establishes a connection between the N.,'%
. % %

physical description of realistic scattering media and the system

theoretic representations familiar to engineers and applied

mathematicians. A more detailed discussion of this approach to linear

stochastic system modeling is contained in a recent monograph by Adomian

[30]. 0

. ~ ~. *
I ,N,"-
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2.7 Conclusions .

We have established the mathematical structure which will he used

throughout the dissertation. Deterministic and stochastic processes

will be represented by generalized Fourier series expansions. Signal

processing operations and stochastic transmission media will be modeled

by bounded, linear operators defined over Hilbert spaces of determinis-

tic and random signals. %r7?

The Karhunen-Loeve expansion was defined and discussed in some

detail. Its properties will be exploited later when the implementation .

problem is studied. This expansion can he obtained from arbitrary ."

expansions by linear transformations of the basis functions and

expansion coefficients.

• . %" %". %,

'0.

° %- . -

.p. ."
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Chapter 5

ATRIX REPRESENTATIONS (F PROPAGATION ANI) '(CATFK IN.G ,'PFKA1P",, , .- ,

... .. ....

3.1 Introduction

We shall begin hv examining the channel model ing prhblem in detail.

In this chapter, the goal is to derive mathemat i cal renresentat i,) nI )r

those deterministic and random trans formations treouent Iv encountered i:.

practical array processing problems. We are especially interested in

developing numerical representations that are , ovenient for diitil

signal processing applicatins, and that can he incOrnorated naturally

into the estimator-correlator structure. The anproach is based on

matrix representations of bounded, linear operators. S

This chapter contains several new results. The matrix represen-

tations for deterministic operators defined over the Hilbert space of ..

handlimited signals were introduced hy Sibul and the author [321.

Furthermore, the results have interesting ramifications in the theory of

non-stationary stochastic processes.

We obtain novel representations for vector-valued deterministic and S

stochastic signals, and for operators defined over these Hilbert spices.
" ".."~ % .

M1atrix representations for heamforming and multipath propagation chan- , .1% %

nels are derived. The model for the multiDath channel is a generaliza- S

tion of a model which recently appeared in the literature [331.

Section 3.2 introduces the fundamental ideas which shall he used

throughout the chapter. In the next section, we introduce matrix repre- * .

sentations for hounded linear operators, and show how they are useful

0

%°% %o %.

Z• - - .1 ..- ,



to)r is;c rete-t ime pr )cessiflg app i ca t i s. To ccinmonst rate their usf- %d

tiulness , -- at rix re-pres;entat ions tor dielay , time st retching'

c~mpeSS~nin(4 si-nul taneous time di-lav and stretching viven band

i mi ted ; i nalIs will he worked ou t..

*ext , matr ix rep[)res en ta t ions to r s tochas t ic ope ra t ors will he

devel Iopt-'d . The representations are equivalent to those derived for

de t t r-ni T-,I t i C t rans forma t i orps , ind can he us;ed t,. mode 1 - preadi

sca t te ri 11v med ia.

1 -. k ec t i o n I.~ ma t r i x reprr e se nt a t i on s fo r \ ec t o r-valu ie d r)r o- es e s

t I II h d stOie t ome de ta il. It ', i 11 he s eeni t ha t , n ve n ie nt

~rt hoTIor-A I iss an he cons t ric t ed f rom s implIe r tuic t i ons Iat r ix

representA tions: *r 0)ptrators; defined over these spaces are constrticted.

Act iial1lv , in SPene ral1, the represent at ions fo~r these operator." mist he

regva rd ed io; tensors , -irice they are indexed with respect to lour

indicies. Fotnt e Iv fte ai is chosen judiciously, the

ope ra tor re pres;eo t a t i ons can he grea t lv simpl if ied.

Final Iv, matrix representations of multipath channels are derived.

The resul is a ge ne rlzto of a model which recentlyv appeared in the

Iliterature.%

3. 2 Deterministic Oeratorq

3.2. 1 Flementary Transformations

Let uis define several elementary signal processing transformations,

heginninsz with propagation delay:

r(t) =s(t T) T)

%

%0
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In the absence of noise, the received signal is a delaved version of the -'- j

transmitted signal s(.).

Time stretching/compression is a %eneraliation of Doppler shifing

which applies to wide hand signals. It is defined bv

r(t) =s(at) %.r

for a > n. Simultaneous stretching and delav is - "

r(t) =s(at(t T)

a combination of the two previous transformations. -

These ideas can he generalized in a slightly more abstract setting.
• ,- -.¢.

If s(') represents a finite energy signal, then s(.) and r(') can be

represented as elements in L 2 or an appropriate subspace of L,, which

implies that the transformations defined above can be represented as 5

linear operators mapping elements from an input space into an output

qace. The operators are defined iriplicitlv:

r(t) = ATs(t) s(t - )

The stretching/compression operator Aa(,) is:

Aas(t) = (at) S.-

? Simultaneous stretching and delay is

* S
As  s(t) = s(C(t - T))

6.

%% ..° %. %%

-,. 0 -.

p,..-.$ :
h. -.-. ..
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This operator is a cascade of A,(-) and AT(-):%

A, Ac, AT() S

It is easy to show that all three operators are bounded and linear.

An explicit representation for a linear operator ()can be ~

defined by a Green's function representation:

fs(t) = h(t , T) X(T) dT

which is a convolution integral for a linear, time-variant system. The .

use of this representation in signal processing applications is well

established [11 [341...................................................

3.2.2 Matrix Representations of Bounded Linear operators

The operators defined in the last section are useful in continuous

time signal processing problems. However, for digaital signal processing

purposes, ecuivalent operators for sequences are needed. Furthermore, a -

representation which unifies the so-called implicit and explicit defini-

tions presented above is highly desirable.

We propose using matrix representations of the contimous time

operators. The definition begins by expanding r(-) and s(-) into

generalized Fourier series:.%

r(t) < r, > (t

k

S(t) < S, >(

k

0-
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The coefficients {< r, k >} and {< s, k >} are the Fourier coeffi- %.% '-

cients of r(.) and s() with respect to the basis {Qk}. Then the matrix -- '
%

representation [Zij] of an operator £(-), where

r(t) = £s(t)

is found by calculating the inner product '

£ij < £#j, i > (3.2-) '

The Fourier coefficients of r are obtained by evaluating the sum _ .

r. =; . s. .4 " "-

Of course, the model parameters {Zij} depend on the' choice of basis

functions used to model the signals. Suitable choices for practical

applications include sampling functions, complex exponentials, prolate -

spheroidal functions, the standard basis, and Karhunen-Loeve eigen-

functions. Some important properties of matrix representations are

independent of the specific basis. This allows the modeling and

identification problems to be examined from a fundamental and unified ",-' -
a-.".'.

perspective.

3.2.3 Fxample: Time Delay

Let us work several specific examples to illustrate the preceeding

ideas. Suppose that s(') is a band limited signal whose Fourier trans- S

form vanishes outside the frequency interval (-a, a). Then s() has the

following generallzed Fourier series representation:

' *% f_.° , ,

0
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s(t) s s(nT) sin (t - nT) (3.2-2)

where T is the sampling interval. If the sinc functions are normalized%

by the factor 1/IT , they form an orthonormal basis for this subspace of

L2. The Fourier coefficients are simply the samples of s(-).

Recall that the delay operator was defined by the relation:

ATS(t) =S(t T)

If s(-) has representation (3.2-2), what is the matrix representation of

From the result presented in Equation (1.2-1):

a~~~ <A , 1 Sin G(t T nT) sin cy(t - T)d (32)
mn <A n9 in T a(t -T- nT) a(t - mT) d 323

This integral is evaluated in the Appendix using contour integration. ;

The result is:

S%

a -sin G(T -(m-n)T)%

an a- rnn (3.2-4) P

To check if the answer is reasonable, suppose the delay T is an integer

multiple of the sampling period T. Then

sin o(kT - (m-m)T) sin ir(k - (rn-n))
amn a(kT -(m-n)T) 7 (k -(n-n))

which implies that "

0% ~ ~

%
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0 m-n k ,. -
amn = (3.2-5)

1 m-n= k

and the matrix representation of AT(.) reduces to a shift matrix

analogous to the Z matrix introduced by Kailath and his

colleagues [35].

3.2.4 Digression: Application to Non-stationary Random Processes

The matrix representation of delay operator AT(.) has some inter- 0

esting ramifications in the theory of non-stationary stochastic proces-

ses. In an attempt to measure "how far" an arbitrary discrete-time

stochastic process deviates from wide sense stationarity, Kailath and 6

his colleagues introduced the concept of displacement rank [36].

The displacement matrix 6R is defined by:

6R= R - Z R (3.2-6)

where R is the infinite-dimensional covariance matrix of the stochastic
- -. .- _

process {x(.,.)}, and Z is the lower shift matrix given by Equation 0

(3.2-4) for k = 1. They argued that the rank of 6R is a measure of how

far x(-,) deviates from wide-sense stationarity.

The Z matrix can be interpreted as the matrix representation for 0

AT(') with respect to the standard basis. Calculating the matrix

elements in this case is trivial; however, only integer multiples of the

sampling interval can be represented. Our representations allow these

ideas to be generalized to arbitrary time shifts. ,,.1'.-'.. *

"% ..

%-



3.2.5 Time Compression/Expansion

Next, the matrix representation for a time stretch/compression

operator will be calculated. Let Aa(-) be defined as: %% .
% • .

% ,, ,,S.
Aas(t) = s(at) *

for a > 0-

Its matrix representation is given by

a f sin o(at - nT) sin a(t - mT)a = -f- dt -- '
mn a(t - nT) a(t - mT) dt

The calculation is straightforward and similar to evaluating (3.2-3). i

The answer is

sin(aT(tm - n)/a) (3.2-7) .-a =( 3.•2- 7 ) "."-.
mn (oT(cam - n)/a)

If there is no stretching or compression, then a = 1, and

sin ir(m - n) ...
mn (m - n) mn

which is the identity operator.

3.2.6 Combined Propagation Delay and Stretching/Compression -.

This example illustrates several interesting ideas which relate

cascaded operators to their matrix representations.

Begin by defining the operator As(*) implicitly by the relation
A. A

As s(t) = s(c(t -T))

• .. ° % .5

5.- . .-
.5 ~5~5 J
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which is the combination of delay and stretching. We have already shown ,

that As(-) is equivalent to cascaded Aa(.) and AT('):

As(-) = Aa AT(')

Its matrix representation can be calculated in two ways. The first is

by the original definition: .0

I 1 sin o(at - aT - nT) sin a(t - mT) d,-

mn J "( - nT) (t - mT) d

with the result

sin G(aT- (am- n)T/a) (3.2-8) .S

. a =(3.2-8)
mn (7 - (am - n)T/a)

:%

The second is by cascading the matrix representations of As(.) and .-

At(-). This can be performed by multiplying the two infinite matrices -

together:

a (a,) = a .() a. (a) (3.2-9) "

mn = n0 M in

where the {amj(.)} are the delay operator matrix elements, and the

ajn(')l are the stretching/compression elements. From Equations

(3.2-3) and (3.2-7), we want to calculate

sin G(T - (m - j)T) sin(aT(aj - n)/a)
L ( - (m - j)T) " rT(aj - n)a) .(3..-1

j=

J

(3.2-10)

%.° *-l. ." *
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This sum can be evaluated by rearranging Equation (3.2-10) and applying *- .

Shannon's Sampling Theorem. Rearranging (3.2-10) yields

L

sin aT(j - n/a) sin(a(T - (m - j)T) e

L T~ (3.2-11) .-=_ aT(j - n/a) a(T (m j)T)

Let k = m - j. Then the sum becomes

Ssin aT(m - k - nla) sin G(T - kT) e,
k= aT(m - k - n/a) G(T - kT)•

00% %~

sin o(mT - kT - nT/) sin a(T - kT) ,
kc- c(mT - kT - nT/a) G( - kT) (3.2-12)

I ~~Now for bandlimited f('), ,-."'

f~t = [go kr sin o(t - kT)•
f =_) Z oT (t -kT) [':<.'

We immediately equate %."'' .-

f = sin a(mT kT nT/a) sin a(kT -mT ) (3.2-1)

fokT) (mT - kT - nT/)) a(kT - mT + nT/a) (3.2--.-

which is bandlimited to (-a , au). Therefore, the right hand side of
(3.2-12) is eut

0

sin ( mT - kT - nT/a) sin (kT - n)T)/a) (32-
G(T - mT - nT/a) n(TT - (am - n)T)/a)

which equalis the result otained by evaruating inner product functional

d irectliy.-"- "-"
-06

[(3.2-12) is

6 ' ..j ', ,--' t." .", "- .' ' ,. -. ' , '/." ,' ,, ' .' . . J' J. j," ,-,, *'t, ,,". "  .' .' " '. '-Z " .' ' - ,,- " "" ,,"", "" "' ' " " "* " " " -" "
.. ..,"J ..'_ , ,, ,h.r.sin. a ..%k._t" ,, m ''%."', lT - Z, nT/a)' - sin -•.' ar,. " -

v (am'. ,... -". ......... T , )/.a) - -,.-. .' r .. , *,_..,
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This example demonstrates that cascading linear operators defined .

over L2 spaces and their matrix representations is equivalent. Compu-

tationally speaking, it is usually easier to determine the matrix %

representation of cascaded operators directly from the definition rather .

than by multiplying large or infinite matrices. It is interesting to

note that by applying Equation (3.2-9) to cascaded operators, we obtain

a method for computing products of infinite matrices.

3.3 Matrix Representations of Stochastic Operators

3.3.1 General

Two fundamentally different matrix representations are associated% 

0
with stochastic operators: Those characterizing X(.) itself, and those

representing its statistical properties. Both are useful in signal and '% ...,

array processing applications. In this section, we shall examine only

the first type of representations. Those defined for statistical -

measures of t(-) will be examined in Section 3.3.3.

The matrix representation of a stochastic operator t(-) with re-

spect to a basis {k} is defined exactly as in the deterministic case:

ii(W) = < f£j, i > (3.3-1)

Each matrix element {Zij(')} is a random variable whose numerical value

depends upon the particular realization w of t(') %

3.3.2 Examples

Suppose £(.) is defined in terms of a random Green's function

representation:

% %

. . . . . ... . .

, % %,.



= j' h(t, T, W)(') dT

The matrix representation of 1(-) is: %

t*.~)=< ~ .> =f {f h(t, T, W) (.Qr) dT} 4*(t) dt

-f f h(t, T, W) ~P(T) 4*(t) dT dt (3.3-2) -

Notice that the time dependence of (,,)does not appear in its

matrix representation. Therefore, we have a means of representing a

time-varying system with coefficients that are time-invariant.

-. The random Green's function representation can be used to model

%
range spread and double spread media. For example, a signal y(-,-) -. htA

returned from a range-spread channel can he expressed

y(t, w) =f bR(X, w) s(t - X) cIA

LR

* where hR() is a sample function from a zero mean complex Gaussian

random process, and X is the spatial variable. Its m-atrix representa-

tion is

=W < ~4j i>

=f{f b, (A, 0) .(t X ) dA) o*(t) dt
~ L1

I* Ile
mcl~e :.r



480
w) -- N %p,%

f f bR(X, ).(t X) , (t) dX dt
R1L' h

This result can be simplified by exchanging the order of integration. .%..

This is permitted provided bR(.,.) is continuous for all w. Then

CO °.,•#'" .[

i. (w) = f bR(X, W) {f (t - X) *(t) dt} dX P

L -

But the integral within brackets is the definition for the matrix 0

representation of a deterministic time delav operator AX('):

< A pj 4. > = f ¢j(t - X) 4*(t) dt -

There fore,

zi (w) = f bR(A, w) a (A) dX (3.3-4) .
i j L

% %

In a similar fashion, the return from a double spread medium

(spread with respect to time and frequencv) can be represented bv

y(t, ~) f b(t - X/2, X, w)s(t - X) dX

and its matrix representation is: *.

i ( = < £4)., 4).> 0-. '..q .

< >

We%

N N":-N:-:'%
%:...,.
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00.

=f f b(t -X/2, X, w) .(t X- *t dX dt (3.3-4)

Wie will find that the matrix representations of integral covariance

:P0

kernels provide useful insights into several problems which will be

studied in this work. Their derivation is straightforward, since it can

be shown that if {OPk(*)) is a complete orthonormal basis spanning

L2 (T), then the functions U,

Ct, s) =~~)f*~

are a complete orthonormal basis spanning the product space L2 (T) x

* L2 (T) [221. This is the space of all square-integrable functions

k(-,-), and since we have assumed all stochastic processes have square-

integrable covariance kernels, they belong to this space. Therefore, in 4>.

terms of the basis ki')}. *

R (t, s) < R ~ .> k(t) (3.3-5)
xk=1 Z=I x k 1

where

<KR, k > f f R (t, S *0(s) ds dt (3.3-6)
2 T

Equations (3.3-5) find (3.3-6) can be expressed in terms of expansion

coefficient cross-correlations, because

% %



R,(t,s) =E~x(t, w) x*(S, w)}

By exchanging integration order in Equation (3.3-6),

<KRI > El f j t w) x*(s, w) t)( (s) dsdtl ,.--x k X T~ T, )w k £ d

=E{[f x(t, w) <*(t) dt][f x*(s, W) e~(s) dsj}
T T

k~ z

Therefore, RC,)can he written in the form -

Rx~t, s) = H Cs) .Rx !p(t) (3.3-7)

where

IWO~~J 4 () 1

and the infinite matrix Rx is a matrix of Fourier coefficient cross- .*

correlations. X i. the matrix representation of Rx(C,-) with

respect to {k}* Notice that when the Karhunen-Loeve basis is used

the off-diagonal terms of Rxvanish. In other words, the matrix repre-

sentation of RxC,-) is diagonalized.

3.4 Representations for Vector-Valued Processes and Transformations

3.4.1 Signal Representations

Numerical representations of vector-valued signals are ess.ential

for array processing applications. Therefore, we next take uip the *



:% . a

% .,
problem of representing signals x(-) defined over the product space N.P.

Li(a, b) x CN, where the interval (a, b) is the index set of continuous

time variable t, and CN is the set of complex-valued N-tuples repre-

senting N channels of data. We seek equivalent Z2 representations of

this data.

The first step in solving the problem is defining a suitable inner

product functional over the Hilbert space L2(a, b) x CN. O)ne such

functional is

> T*
< x, v =fx (t) v*(t) dt (3.4-1) ..

a

0

which is convenient for signal processing applications, because the
%.

induced norm jxjj has the interpretation as total sig-nal energy summed%

over all N channels.

Provided a complete orthonormal b-asis exists,

X(t) Zx. ( t) (3.4-2)

and as before, the Fourier coefficients are given by

xi < K x, 1i (3.4-3)

for all I.

In pri nciple, Eqnuat ions (3.4-2) and (3.4-3) can be used to obt ai n a a

F . -

nuimorical representation for x(-). However, it Is not readily apparent ~ .a

liow a;lui tablo basis {jk( )) spanning the product ;pace h2a ) x .'.

Car he fouind. A method of const ructing an orthonor-ial h asis from those J

%

%, %
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which span the individual spaces L2(a, b) and CN is needed. The

following theorem is a generalization of a result discussed in CGohberg_______

and Goldberg 122], and allows an appropriate orthonormal basis to be%

constructed.

Theorem 111.1: If foil is an orthonormal basis for L2(a, h), and _____

is an orthonormal basis for CN, then the functions

±ij(t) O i(t) .2i (3.4-4)

form an orthonormal basis for L?(a, b) x 0N, for i = ,2,..., and > K

Proof: To demonstrate that !j(}is an orthonormal basis, it

suiffices to show that any two basis elements are orthonormal, and that

< gLi > = fl implies that g is identically zero almost everywhere.
% %

Orthonormaiitv follows easily:

> T
< (t) (t) dt

a ~d

T T
(t) eT e* 0 (t) dt =eT e* r (t) *(t) dt =~

a a

Next, it is necessary to show that if g E L2(a, b) x CN' and if 0-

<g -. >. o- (3.4-5

'~ d .. ; %

then =0 almost everywhere.

% %.

P.%
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Expanding Equation (3.4-5) gives

b 0
T * *T %< >,$ f g (t) .(t) e. dt =g e.= 0 (3.4-6)

j aS

where g. is defined by

5 b

Sa I a N

an N-tuple of complex scalars. Now, since {e2j) is an orthonormal basis

f o r* 
5~ C %

frNEquation (3.4-6) implies g = for all i. This means that%

f g (t) 0* = 0 (3.4-8)
a

where (3.4-8) is the mt-h element of gi. (3.4-8) immediately implies

that for m =1, 2,..., N, gm(-) is identically zero almost everywhere,

because { i(-)} is an orthonormal basis for L2(a,b). It follows from

Equations (3.4-6) and (3.4-8) that for (3.4-5) to hold for all possible

i and j, g, is identically 0 almost everywhere. Therefore, from Theorem

11.3 in Gohberg and Coldberg, Jij(-)} is an orthonormal basis for L2(a,

b) x CN.

Now that an orthonormal basis for L2(a, b) x CN has been con- '%

structed, a representation for elements x(-) belonging to it can be

developed:

x(t) 7 x. .(t) e.

i=1- _61

% % %*-r

A. ad .0
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where 'J" -'"

= < x >

are the generalized Fourier coefficients. Since the norm of x(.) is
-0

finite, bv Parseval's equality

2S Ixij <00
i=l j=l 0

from which we conclude the {xij) coefficients helong to 22.

3,4.2 Matrix Representations for Linear Operators Over L,(a, h) x CN

Processing operations such as beamsteering or propagation channel

effects such as angular spreading can be interpreted as linear operators

mapping elements from L2(a, b) x CN into itself. Therefore, for the 0

same reasons as before, we seek matrix representations for bounded,

linear operators defined over this space.

Let 1L(') be a bounded linear operator on L2(a, h) x CN, and define S

the element v,(.) by

v(t) = Lx(t) - '

for x c H. Then

g.. ... %'f .

Lx(t) = < x, > L (t) (3.4-9)

k=1 =-

*• , -%

• 0% %

0 " .- , .
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But

% N

DD (t) < N ( >'PtA34-0

i=1 j=l 3 1

%

Combining Equations (3.4-9) and (3.4-10) yields Z.

k~ Z

< -k2. -f, -,j1 34-1

= j k Z . > < x, k > .(lj(t) ( . -

Now, this equation expresses v(-) in terms of {Ij(-)}, and of course,

FP r
v(t) = y. (t) < l Ky, > (P (t)(.-)

Equating coefficients < v', (t j > in (3.4-11) to the equivalent represen-

tation in Equation (3.4-12) implies that-

< y, > < LI, (D > < 2' >.
k Z kk -ij 1

or that

V z ))Z x (3.4-13)

k Z

where 0 '

Ijk. -kW -i

-. 7.
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%%for all i and k, and for j and 2. 1 , 2,..., N. This result which ..2 """-,

relates the representation of x(-) to the representation of Y(') leads -

to the following definition:

Let {_ij(&)} be an orthonormal basis for L2(a, b) x CN, and let

L(') be a bounded linear operator defined over H. The matrix represen- --

tation of L(-) with respect to basis is given by

XijkZ = < Ltk gij > (3.4-14) .,. "''

for all i and k, and for Z and j 1, 2,..., N.

Representations for stochastic operators defined over L2 (a, b) x CN . %

are obtained the same way:

Zijk(w) < £qkZ, Lij > = < i~k _, i _-j > (3.4-15)

The {[ijke(')) parameters relate the generalized Fourier coefficients of

the input signal to those of the output process analogous to Equation

(3.4-13) .. . . _

Strictly speaking, the representation {Zijkt } must be regarded as a
.° ..% ...

tensor rather than a two-dimensional matrix, since the parameters are

indexed with respect to four variables. Obviously, this is not the most '

numerically convenient representation one might want to use in an appli- 0 -

cation. However, the representation can be simplified by choosing the

basis properly. e

%
.. . . . . .

.,. .., ,
g-eme. fe .
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3.4.3 Beansteering Operator

The example we will work in this section is to find a matrix repre-

sentation for a beamsteering operator LB(.):

LB s(t) = [s(t - T) ... s(t - (m - 1)T)]T %

LB(') represents the processing needed to steer the response of a

uniformly spaced line array towards a desired look direction. The

vector s(.) is defined by

s(t) = [s(t) • s(t)] T  (3.4-16)

for -7T < t < 7r. Assuming s(.) is periodic with period T = 27T, t'

s(t) s e nt(3.4-17)
n -~ \•%.,,* .,% ,

*=,1. lo

where the fundamental frequencv wo is unity.

Convenient representations for s(.) and v(.) are

Por

y(t) = y. Y .(t) e. (3.4-18)

i=-- j=1 -- "

s(t) = 2 Y sij 4.(t) -e. (3.4-19) ... '' €" : ...

i=-= j~ 1J1

The matrix representation of LB(') relates the {sij} coefficients to the

{yij) coefficients * .

S
'16"% % .% -

%

ki="-= >" ijki Ski (3.4-20) , .-
k
= -  

=1 '% "J.qP "

A, i

i kijk skZ

0*
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and the coefficients tZktmn} are found by

Xkl.mn < LB ±Mni ikk < LB m e~n ~k -!I >

The product space L2(-i, iT) x C11 is a Hilbert space with inner product

functional

< x, v > f T(t) y*(t) dt (3.4-21)
iTr

for all elements x and v in H.

Let us demonstrate how a judicious choice of basis simplifies the

* matrix representation of Lg(-). A natural selection for the {k)

functions is the complex exponentials:

WO~) ejkt

and the standard basis for the (k etr k=1.. . Te

zf L k(t) p'*(t) t eT e =6 f e z C_ 0 jn dt
kimn m kt -iZ-n Zn

6 e-jk z f e j(k -m)t dt =ejk k 6 6 (3.4-22)
Zn -Tkm Zn

for k = .,-1, 0, 1,.., and Z =1, 2,..., M. The iZ is the delay

introduced into the Xth sensor measurement.
N~

Equation (3.4-22) shows how the selection of basis simplifies the

matrix representation. Its kth column is

% %
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-jk -jkT T ....... .

e 1"..e m]

which is the steering vector for a narrowband signal centered at w =

kwo . This shows that a narrowband steering vector is simply a special

case of a more general beamsteering operator which applies to wideband

processing.

3.4.4 Matrix Representations for Multipath Channels . -

In the next example, matrix representations for multipath propaga- .

tion channels will be derived. The received data are defined over a

Hilbert space L2(a, b) x C4 and have the canonical representation

M*

r(t, w) = r. .(w) i(t) e. -

i=- j=1 , -%

The transmitted sign.l s(.) will he modeled as a deterministic, scalar, - "

periodic function with Fourier series expansion " "

0

s(t) s Sk eJkwpt 0

How can the representation {Sk} be related to the {rij(')} para- "" "" "

meters in a multipath channel?

In a multipath environment, energy from a common source arrives at .

the array from several directions. A model must take three phenomena %

into account; namely, a time delay Tp(-) common to every path due to --. V .

range delay, a random real-valued scalar representing propagation loss

due to distance, and time delay due to wavefront propagation across the

V .-. ,

, .p .. % .. - ,-

,%' " '..:-~ ' s ; v_ ... '.. *.''. ,"* "- .-. '.%** .. """ , ,..... .. ', '. .. %. .'- ',,.,% ,.r .. .'. V
" -



array itself. The latter time delay depends on the arrival direction of

*, the wavefront and the array geometry.

Without loss of generality, the matrix representation will he de-

rived for a single arriving wavefront. The result is easily generalized

to multiple wavefronts due to linearity of the medium.

In the absence of noise, the array measurement at time t is:

b(w) s(t - Tp - TI)

r(t, w) = (3.4-23)
". % ? , %

b(w) s(t -
T p - TH) [ % Pe % Od

where b(.) represents propagation loss, Tp is the delay due to distance ..

traveled, and Ti is the time delay at the ith sensor due to the array ..

geometry.

Rewriting Equation (3.4-23) in operator notation gives * ,

r(t, w) £s(t)

* . % ,,

where

FLT 0 b(w) 0 0 5(t) T"'"t)

p 1 "

£s(t) =

0 0 b(w) 0 LT

M s(t) J

and both r(",") and s(') can be expanded as: -.. .

r(t, w) = r..(w) €.(t) e.-i=- j 1 z.1 "1 -] ." ."..',* "
=- -j=1 ,

%

" /~~ e_ %,% %,,,,,

"./ *. *. *

"J ' ' ' = ' ; ' " . " w 'W ' ' " " W . " W ' "@ ', , 'W w 
" ° "

, w ' % ' # ' ' " . , ' ' " " = W . ' , . . , 
"

. " , , ' - " . . - " " - ", " " ' , . " % .'0
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s(t) = .~ )e.

i=-v j1 1 -.

The matrix representation of J(-) is computed by

£kmn(uJ) =< timyn, - kR. >

where the inner product functional < *.)is

< X, y >= xT(t) y*(t) Ot 
4

T 

1

Before proceeding with the calculation, a suitable basis rist he%

chosen. We have already proved that a basis snanning 1L2(a, b) x CMI can

he constructed from product-, of basis functions spanning thle indi-

vidual spaces. In principle, one could choose any arbitrary i~k} and

{ekl from a wide range of choices. However, a judicious selection of
%,'~ 4

basis might simplify thle matrix representation. Since -,(-) is periodic,

the natural choice for the scalar basis is the set of complex exponen-

tials. It is not clear what constitutes- a godcoc orte(k

basis, therefore, let us try the standard basis first. %

In terms of the standardI hasis,

(Wn U~ < (t ek (t e d t (3.4-24) % %

V

where To is the observation interval, and To) 2
-./LjO. "P%?%

'6%
.. -# .

%~* *%
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Now, e~

IT T b(w) 0 LTr 0 0

I p

=% %

0 LT LT I~mt
I_ J 10 b(w) 0

[0 ... 0 L h(W) I. ~(01]
n P

and .-

L h(w) L (w (t).r~ (t T/ T

T T (2 1/2 b~w ex m 0( n r )
n p 2nTe..0

-h(w) exp(-jmw T I} expf-,jmw T ) ( ) (3.4-25) ~
0Op On M *

Substituting (3.4-25) into Equation (3.4-24) gives

T~ n

2. (w) e t ( .426

matrix is
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_ _ ,~.p., .,.-.
e-jkw0T 1 %e-J.

h(W) e- o p (3.4-27) A-

e-jkw 0TM %.%

S % dd

The column vector is simply a steering vector for a narrowband signal .f a.

frequency kwo, meaning that the matrix operator can be interpreted as 9

an infinite set of steering vectors acting on the individual frequency .-.

components.

In order to generalize the result to multivath channels, the •

representation for each path is summed element wise, which is permitted

since we have assumed a linear medium. The k-th column of the matrix

becomes S-'-a,:..

p
h. (w) e 0 pp v ( 3.4--28)

1 -ki

where p is the number of paths, T is the delay due to the i-th path,

and {j}ki} are the narrowband steering vectors associated with the k-th ,* -

Fourier coefficient of s(-) and the i-th wavefront arriving at the

array. * ....

3.4.5 Discussion

A special case of matrix representation (3.4-28) has appeared in 0

the literature. Recently, Paulraj and Kailath [33) developed a multi-

path channel model in the context of an optimal beamforming problem.

% .%

'.

:%:::.:::. S

-,, ,,- ., , ., ,-,- . ., , ., .... ... ... -.. ,.. ... ..... . . ..
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Their model for thie array output r(-,) in the absence of noise is

written:

r(t, w) A f(w) s(t) (3.4-29)
% 1 ~

where s(-) is a deterministic, narrowband signal, A is an tl x p matrix

of steering vectors representing the arrival directions of p wavefronts,

and f(-) is a p x I random vector whose ith element is a complex scalar

representing the path loss and phase shift in the ith path.

Let 'us demonstrate that their multipath channel model is simpLTly a

special case of our model. Assuming that s(-) is a narrowhand si',nal

in the form

]w( t . *

s(t) =e o

t he n s( is a s pecial case of he Fou r ier e xpa ns ion ised i n t he las t

.ect ion,

n k I

and rearrangine A f(w) -,ives

p
A f(wi) = f. (w) a,

From Fqtiat ion (34-28) the mat ri x represecntat iori re lat i 1g, the series' ..
e X r) n i on o ef f ic ie nt s o r( s t o thIios e o r i,)i

-V

: P
%
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%d

pq w* a frm ith t ieo t ,1

aqnatingatine th ,,}teermng viththes h 1 ( t exp!->h ).mlltat' etfits

Pu aiand Ka i lat the teri I t r h mod tI reducon tres thaal-i; t
AV

Q ua t ion (34- 2 8

5. ConclIus ions

Mat r ix re present at i ons of bounded, I i nea r ipe rat ors ;,r,)%' J d e i

conveni ellt mean11s o t modelI i ll de t er-iifl1 i r ini s t )chLstc vioal r tIns-

forma t i inns whi c h ai qe n a r-ri % process, in rivroh Iecms- Thiey ioe wel I

'nuited tor di ,i tal qignal pr oces;i nv ippli cat inns since t hev ire- hos ed

upron orthonorma 1 re-presentations oI those i:a snuder fexami nat ion. It

cS vlear t 'a t steec t ing i b; is is Id i Lii lIv con) simplIi t tti te oeraitor

model iniC problem a great dieal.

',..e ha ve-'ht ai ieod new reuLl ts that shdnew I i vh t iTito clIass cal

ijc";i I heory Isites. In part i culajr, the reprosen tait ions fr t ime le lav

,Ter it )r, c ve-; new in i Oht inTt o tnt t rheorv )I n-ta inr src t I

,)rcss f cuiirse, olir int erest i n ma tr ix rep1)resen t at ions l es;

I~ev,,ii thenvret i cal I ,)Tsi lerat ions alOne . 7hP ti na I pirpise; o f th is work

is t lvel opr stochlas t ic and dt, re rminTlli st i C o1de IS tha t cain eas i Iv h

i nco(irI)o raited i to t he est i Tat or -cr rcIa tofr to r sukibs e que nt i ie n t i t ica t ion-

i r -nr innI t i n wi th (let oct I on*

Thes,; -'mmerit s lead to ai cerx' -rort int ise whi ch deserves

11 rti ter issi. II t he' r'oleIs -rotsent i-!n th Is chptet-r ,i re

w or%.



based on orthonormal series expansions, of determi ni sti c and random

processes. nf course, many other methods of signal and system modeling

have been extensively s;tudied over tie last forty years, .2specially

state space and Parametric or rational transfer function models. '4h v

has a Fourier series expansion approach to the modeling problem been

selected?

Fi rstL , t hi s approa ch gi yes cons idera blIe i ns i gh t i n to the na t ore anid

structkire of I For example, we showed how a beamformitiv operator

for widehandl , periodi c si gnals can he represented as a nat ri x whose

Columns (-io be inoterpreted as, narrowband steerinv vecetors. This is an

i nt u it iv e pIe a s inrg re s uIt , a nd i t gi v es ph %,s icalI me a n ing ton a n

abhst r act r es ki I t t hat 71igh t be comple telIy m is s ed i f ot h er m-od e I s we re

used.

1; e cond t these reptore s enta t ions al lo w for i grea t l1ea Iot f]I c xi -

h iIi t v. Any bais s pa nn ing the s i inalI spa ce c an be is e d , a nd we ha-ive

ulIread c rioconst r;i ted that a judi c ious selIec t i on o f bais ca(.IT simpri fy

th11e mo deIi ng vp)r ob ePm . Fuir thfie r m or e, this allow s th'ie det-c t ioiin probl em t o

he solIved icenericall for aariayst tgnrl i7ed Fouricr

,,)e ff ic ient s. This is imotnsince dtiscrete Fourier trainsfrms, are

used (Ifr e r ie nt Ilv i n p)raic t i, alI a ppli ca tiis .

'la t r i x one ra t ors avo id d i f f i cul It i e s i he re nt %.,i t h replres e nt i rog

non-sttionary sj-nals and systems,. Recall that matrix representat ions

of t imne-va r v i ng s %,s t e ms air e th)e ms eIv e s t ime - i nv a r i a nt . Tbhis prope rt v0

s impl ifies; the modeIingw arid ident ifi cat ion problems coosi derAblyv. ()TI

thle o'ther i~ind ,)mdel inv t ime-varving , stochast i systems wi t h r itionalo.p1

0e

%, % -~
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transfer function representations is exceedingly di f ficult, and in ourI opinion, not mathematically mature. S
The most important reason why this approach has heen selected .. 9 I~

relates to the structure of the estimator kernel c(,).frthonormal I

series expansions will he used to implement G(,,and the matrix

representations for ~()can he incorporated into the structure in a

straightforward manner. The Karhunen-Loeve basis is preferred because

it simplifies the Solution for C((,-), and It represents a fundamental

approach to the stochastic system modeling and identification problem.

V"9

* e"1
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Chapter4

IMPLEMENTING THE OPTIMAL STRUCTU'RE

%

4.1 Introduction

This chapter addresses several crucial issues which arise in the%

process of solving the estimator-correlator equations: -7 -

R(t, u) O(u, z) du 6(t -z)I l1I
- N

R (t , n) C 61, z) d u R(t , z) (4%
T

First, it is necessary to estahlish a suitahie mathematical representa-

tion for the covariance and filter kernels in order to solve Equations

(4.1-1) and (4.1-2). It is not clear from the definitions of Rl(-,),

R~(),and R(,)alone how to formulate solutions for )()and%

G(*,*). oreover, o~htaining numerical representations which are '

reasonahlv easyv to manipulate in hardware is essential for adaptive K ' .

realization of the processor.

Another issue which must he resolved is more fundamental . 'qo far, *.A.

we have presupposed perfect a priori knowledge )f the covari ance 'ker-

neIs . However, this is an tnreasonahle assumption in most practical%

situations; therefore, it Is necessary to estimate the kernels from

array measurements. Kernels Rl(-,) and R r)can he estimated

directly from arrav data using standard adaptive techninjues. )n t he .a

other hand, R,~( , can not he eqt imated direct lv from arrayv data, .ince

the '0t4nal -omponent is always ohscured by adediyr 7~easoremnent noise.

N N
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If a priori knowledge of Ry(-) is inknoirn (,r incomplete, a means of
-Aist~~, be. fon. noml

estimating it in conjunction with detection must he found. Jncomplete

knowledge of Rv(.-) represents a fundamental limitation which must be 0

overcome if the optimal structure is to he realized. : a\,

Third, the identification scheme for R== must he sinal inde-

pendent. In other words, once the channel operator c(.) has been -A;- .

identified based on probing signal measurements, we should be able to "'a.

use the results to estimate Rv(.,-) for an arbitrary transmitted %

signal.

Finally, a means of incorporating a priori knowledge of the

scattering channel into the detector structure is needed. For example, N

we may know that f(.) belongs to a certain class of channels character-

ized by one or more parameters. Vhen one or more of these parameters "

are known, or if hounds can he placed on their values, the ability to

incorporate this information into the processor would be useful.

We begin bv reviewing the Karhunen-Loeve orthonormal expansion and

its relationship to the spectral representation of linear operators.

This expansion is the fundamental tool which will be used to analvze and

imnplement the processor. We assert that it provides the theoretical

means to zolve for the processor, gives considerable insight into its .
--S - -

mathematical structure, and establishes a link between theoretical

analvsis and implementation.

'ext, we will show how these ideas can be used to solve for the

processor structure. Finding 0(-..) is straightforward. Solving

for the estimator branch is somewhat more difficult, but much more

7 -. ":.--

, " " -"-

I? .- a.d



70 '_ ., OP.

interesting. Once again, a Karhunen-Loeve representation provides the

solution for G(','), and also suggests an implementation scheme.

Furthermore, it provides useful insights into the modeling and identi-

fication problem. In Section 4.6, the relationship between £(') and the

estimator kernel is derived. Identification of £(.) is required in

order to calculate the conditional mean estimate.

4.2 Covariance Kernel Representations

The key to solving Equations (4.1-1) and (4.1-2) is the spectral

representation of covariance kernels R Ry(','), and R I(., .).

The relationship between the Karhunen-Loeve expansion of a process %

0
x(',') and the spectral representation of its covariance kernel R

can be easily demonstrated. Recall that Rx(.,.) is defined by:

Rx(t , u) = E{x(t, w) xH(u, W)} (4.2-1) 0

for t and u within the observation interval T. Expressing Equation - *-

(4.2-1) in terms of the Karhunen-Loeve expansions gives e :...

(t, u) =Ell I. Xk m _~ ) [ x ( ) (u)] H } .'" -""--.,.

Lxx(W) (t )] xkt) ( ) }"-.',."

kl I= e-'.'. ,l

X X. EXk(w) xz(w)} ozk~t 0Hu (.-2 ".''9..

k=1 Z.=1

% %.5.. . b

--. v.-5

.5.

0...

RE, )= { k k(W) x ()[ !kt X ()(42)

k=1 Z=1

5= 0

0

%~
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However, the expansion coefficients are uncorrelated, therefore, 'vV .i

Equation (4.2-2) reduces to "

(w)12 1 $,(%
(t, u) = I mIxk  A %k(t)

x k=1 k %-

(x)
Furthermore, the E{Ixk(w)12} terms correspond to the eigenvalues {Xk)

of the integral equation whose kernel is Rx(',.). Therefore:

00
-(-) HV " q -.

R (t,u) = X jk k(t) 4(u) (4.2-3)-x k -Lk..:/.,.
k=1

which is the spectral representation. This discussion shows how the
0

uncorrelated expansion coefficients simplify the numerical representa-

tion of the covariance function, because they reduce a double sum

representation to a single sum representation. Stated another way,

the Karhunen-Loeve basis diagonalizes the matrix representation of

4.3 The Inverse Filter Branch "'..

4.3.1 Derivation

To illustrate how these representations are used, consider ,

Equation (4.1-1): . -.

f R (t, u) Q(u, z) du 6 6(t - z)l ,. ,'
T

and solve for the inverse filter Q(" ). ".

*#" .\('.4

. .,

* ,r
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From (4.2-3):

u) (tn))0(u) (4.3-1) V
-:; 1 k kt)-k p

We assert that the inverse operator O(,)is

Q(t, u)=)73 t)~() (4.3-2)
k=1 A k%

In order to prove this assertion, substitute Equations (4.3-1) and

%
(4.3-2) into (4.1-1): ~.-p

T k=11 zn

Both sums converge uniformly; therefore, (4.3-3) can be rearranged as

follows:

(n)0

Tk=1 Z=1 X

(n)

- (n) ~k~t)f ± (u) ±,(u) du Z~(Z)(4-)

Since the basis functions are orthogonal, Equation (4.3-1) reduces to

the form



73 1

| 
6

,.- .- *.

000

}]. k~t) .(z)(4.3-5)"" -" -
k=1

It can be shown that (4.3-5) equals 6(t - z)I, where 6() is the Dirac

delta function. In other words, RN(,) and Q(,-) are inverse kernels,

and the inverse filter solution is given by (4.3-2). 0

. . -, q.,

4.3.2 Discussion

Equation (4.3-2) is the solution for O(,) expressed in spectral %

form. Clearly, once the spectral representation of IN(.-) is found,
• , . .. - . .. ,

calculating Q(.,-) is straightforward, because one only needs to

(n)calculate the reciprocals of the eigenvalues ( . This simple
kS

procedure demonstrates the usefulness of a spectral representation..-

approach.

Although the preceding derivation for Q(,) is mathematically

correct, several difficulties must be resolved before considering an

implementation based on this solution. First, we have yet to discuss % % 6%

how the eigenvalues and eigenfunctions used to represent R N(,) are

found. Solving for them even given perfect knowledge of ( means

solving a matrix integral equation, clearly not a simple task.

Furthermore, since Rji(.,.) is usually unknown a priori, the kernel must 4

be estimated from array data. Exactly how this can be done remains to

be seen. Finally, the numerical issues involved with hardware

implementation must be examined. Since the calculations associated with

the preceeding discussion are often be performed on finite-precision Y6

fixed point hardware, robust computational algorithms ought to be used.

d %. " %
%,'

W.

%~ % No'
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Each of these issues will be addressed later in the dissertation.

However, for now let us assume that these difficulties can be resolved,

and turn our attention to solving for the estimator kernel N( %)

~%
4.4 The Estimator Branch -Fo

4.4.1 Derivation

In order to solve Equation (4.1-2), suppose that R(,)and

R(,)can be expanded with respect to the same orthonormal basis

R (t, u) (Y (H1 *

-yk= 1

tU) = A) kt 2(u) (4.4-2) ,.

k= 1

0

The basis is not the same as used to expand Q ,). We claim that ..

G(-,-) is given by

Xk H.
-(t (t) (4.4-3)

G~t u = _(r) -k 4.-tkju)
k

To prove this assertion, substitute (4.4-2) and (4.4-3) into the left

hand side of Equation (4.1-2):

(t_) u ±H(z) du (4.4-4)
T k=1 Z=1X

%~

%

%VP .

% % %
LAO
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Both infinite series converge uniformly; therefore, (4.4-4) can be%
.b %

rearranged, yielding -,

0

Once again appealing to the orthogonality condition of the basis func-

tions leads to the result that (4.4-5) simplifies into

kY = t z R (t, z) (4.4-6)

whic prve that -L~ k~ -Y

wihpoe thtEquation (4.4-3) is the solution for G(-,-). . d

4.4.2 Discussion

The solution for the estimator branch kernel depends on a crucial

assumption; specifically, the ability to expand the covariance kernels % ,

Pand Rl(*,.) with respect to the same basis {~~). This is :

equivalent to simultaneously solving the equations

(x)4

X ~~~~ ~ ~ ~ ~ .cP (t , tu D()d 447

kx -:- -:- % %

Pk (t) f R (t, u) 0 (u) du (4.4-7) '

S~ NiN
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tion of two linear operators 122). it is essential to establish the

conditions when this is possible. t ce t

It turns out that simultaneous diagonalization is trivial if the 0

noise covariance kernel corresponds to the covariance function e

of a white noise Process. Since

.) =R (..) (4.4-9)
-, -y .N(. .. .

if

R (t, u) = 6(t - u)I (4.4-10)
-N

%

then by substituting Equations (4.4-9) and (4.4-10) into Equation

(4.4-8), it is clear that {J((')) solves both relations. In other

words, if the noise process n(-,.) is spatially and temporally white,

simultaneous diagonalization of R (',') and R (.,•) is straightforward.
- -y

However, making a white noise assumption as a part of the problem
.% ". % "

formulation is unrealistic. Therefore, it is necessary to establish

the conditions when simultaneous diagonalization is possible given a

colored noise process n(" ).-

Simultaneous diagonalization can be achieved by decorrelating the

Fourier coefficients of n(.,'). The various relations among the 0

covariance and filter operators is most easily seen with the £2 repre-
* .% **%

sentations for the various signals and operators involved. In terms of

Fourier series representations, the measurement model
- ..? .. :

r(t,w) = £s(t) + n(t,w)

%-W.

o- %o -L.7 . "
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is equivalent to
* . % %p p

r(w) =v(w) + n(w) (4.4-11)

where the coefficients r(), y(.), and n(') are in column vector form.

In terms of matrix representations, the relation -- "

R1(',') = R (',') +_RN.,)
-1-y

is equivalent to
,,., l, "-,,'

1 +N (4.4-12)

Define a matrix filter C operating on n(') such that S

n' =C n

and

E{n'(n)) = I""

The structure of C depends on how the filter operator is implemented.

For example, if Gram-Schmidt orthogonalization of the Fourier -.-... *.

coefficient vector n(') is performed, C is an upper or lower triangular

matrix. .

The decorrelation can be performed by premultiplying r(') bv C:

C r(w) =C y(w) + C n(w) *~~~

Clearly, C alters the relation among RI, Pv and in Equation

S.*' . A

,. .-- .-
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(4.4-12). The modified noise covariance kernel becomes an identity

operator; however, it is not obvious that the modified signal plus noise

and signal covariance kernels can be simultaneously diagonalized. Is

this still possible?

The answer to this question is yes. We have

HH H H

E{r'( i)(r'(w)) } . .... = E{C r(w)(r (w)) CH} = C_ R C"=],.., ' -

C R CH + CR CH = C R CH + 1 (4.4-13)
--- y- -- - -- .

or, 1

= R' + I (4.4-14).. . ,-1 -y - , - - -.

A theorem from functional analysis [22] states that a necessary and

sufficient condition for simultaneously diagonalizing two linear opera-

tors A(-) and B(.) is that

AB() = BA() (4.4-15) ML.

NOW) " - -,. '"

Now, .. ' d

R =R' + I =R'(I+ R1) +R
-y - -y- -y

=R'CR' + I) R '  = RI(RI) R' 1

-y -Y -Y -Y

There fore,

°0-I

>-[-" '-9',
• *. -, %, .°

,. N"':.'

- 'i. .i'd,'...,-,..",,.',,,..'k.".",.' i'-.,'-.
".

' ",'c, ".,- '. '-'-' " ".'-,.".'-L -". " , v -,' ,,,' -.", ° ." ." ." ." .', " ,.".." ." .". >," . ..",.' -. ",,.', -' -." . '-,.,.'.." ".,
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t'R I R' R R' RI R
-1- v -V- -v -v -1 %

-Y-

diagonalizable. Moreover, since R' and R' are positive definite ..

-1 -Y

Hermitian forms, they can he diagonalized into spectral form with a

iinique unitary operator U. The operator U' diagonalizes both R' and R'
-1 -V

simultaneously, since R' is the sum of R' and an identity operator. -

-1 -Y 1

Therefore, in matrix form:

-Y y

-I vH
-A' A- U

y y-r %

= U' d (y') A()
U iag[A1  /A U

The spectral form is obtained by decorrelating n(-) when the noise-

process is colored.

4.5 The Structure of G(-,) *

The solution for G(-,) is in the elegant form of a spectral repre-

sentation parameterized by the eigenvalues of Rl(-,) and Ry(.,-). But

its significance goes beyond an abstract theoretical result of little or

no practical interest. On the contrary, not only does this mathematical

structure give considerable insight into the relationships among

detection, estimation, modeling, and system identification, it is the

N 00

%4
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key to practical Implementation as well. Whv do we make these - "
., :, . .,-

assertions? - -

First, evaluating the conditional mean estimate from array measure- .

ments is simple. This can be seen clearly by expanding G("-,) in terms

of Equation (4.4-3): ,

k H
f G(t, u) r(u, w) du = f (- ,kt) ,H(u)l r(u, w) du
T T k k

k6

() ,(y)X X .% .. % %

- ,'7h- K r, k > !(t) = 7 k r (W) 0(t)
(r) -- k -k (r) k -.-k

k ak k Xk

0

The coefficients irk(.)} are obtained from the array measurements by an ....

inner product operation. Calculating the conditional mean is straight- .

forward because each coefficient is multiplied by a real number. This

% %-", -f
operation is analogous to postmultiplying an N x 1 vector of coeffi- ,.

cients by an N x N diagonal matrix where only N multiples are needed.

The preceding remarks suggest this structure reduces computational -, -

6-e

complexity.
Th aaees ( r). (y) ,"'

The parameters {Xk } and {Xk } give insight into the channel .- '.'-x
0 k

operator identification problem, and suggest a method of obtaining
(r)} terms are the variances of

C(', ) adaptively. Recall that the {Xk } -e -ms are th varances of

the expansion coefficients of r(.,.) given H1 :

(r) = { 112} ,.,.- '" z-,
2 %

ak r - E{ ( 4.5- I) J* ''U".

The (A ) parameters are the variances of the signal process
k

coefficients:

IN-" - -

% . *" '
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%. 'P. % % 1

(v)
Ak E{Ik l (4.5-2)

The re fore, the s pec tralI repres en tat ion o f C( ) t rans forms the cova r-

iance kernel estimation problem into a parameter estimation problem. %

The significance of the parameters is obvious from Equations (4.5-1) and
• •

(4.5-2), and in addition, these definitions suggest how they can be

obtained from array data. The {xk (r)' .
obtained~~~ ~ ~ frmarvdt.Te( parameters can he estimated by

performing the inner product operation < r, Ok >, taking the magnitude -

snuared of the result, and averaging over L independent measurements. " -"%

on the other hand, obtaining the {k parameters is not as straight-

forward, since uncorrupted measurements of the signal process y(.,.) are

not available. These parameters represent a priori knowledge which is .... -

needed to calculate the conditional mean. If they are unknown, another

estimation procedure must be found. This problem will be examined 0

further in Chapter 6. . .
(Y)

The other issue that must he addressed is how the parameters {(XL

relate to the channel operator f(-). This relationship will be studied S
*.- . C,.,. U-

in the next section. " ..

4.6 Relating £(.) to the Unavailable Eigenvalues

(v)The relationship between {k - parameters and Z(.) is obtained in
k

terms of the matrix representations for R (",) and £(): .

R = E{L(w) P LH (w)} (4.6-1)-y - - -C, .C

L(') is the matrix representation of f(.), and P = s sH, where s is the %

-''N
' , .-6
A.. A
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vector of Fourier series expansion coefficients of the probing signal.

If the Karhurien-Loeve representation of v(-,) is used, then ','V .

0

R dia[ (y )  (y )

R 1 X2 (4.6-2) %

J."',
- PI, •*.%..g-

which are the unavailable parameters in the estimator structure. The

ith element in Ry is:

E{ y(Gj 2 (y) Eft i() X*z n ( )} s(m) s*(n) (4.6-3) %._

Eiy.wI im in 4

(Y

This shows how the {AkY)} terms are related to the second order statis- .

tics of the model parameters. Further insight is gained by evaluating •

the cross-correlations:

E{Z. (w) Z*I(w)} = E{< £, *i > < ton' * >* }  (4.6-4)

.- .,'%J .. "

In terms of a random Green's function representation for 1(-), ...

E{< £ m' i > <  n' i >

- E{[ff h(t, T, W) 4m(T) 4*(t) dt drT]ff h(u, v, w) On(V) **(u) du dvl*} '

ffff E{h(t, T, w) h*(u, v, o)) ,*(t) q (u) OmCt) ,*(v) dt du dT dv -
i III n

• G(t, T, U, v) p*(t) i(u) m(T) p*(v) dt du dT dv (4.6-5)fff ~, , ,v)qi II n ''

1-0

* . ,,r
N-

% %.

f, . ,, ,,.

*1 .. .

0 <

A- .,*~* ~ .* * * *' ~NN \ ' ~ N'.% 'V.,,. ,N L
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The expectation of the product h(t, T, ) h (u, v, w) appears quite

often in the stochastic svstem theory literature, and is important -..-.

enough to warrant a name. G(,,,') is called the stochastic Green's S

function of kernel h(• ) [30]. It is a deterministic integral kernel

which relates the statistical measures of the system output to those of .' 111,

its input. In this context, G(,,,) relates the second order statis-

tics of v(*,') to the properties of probing signal s(•).

The four-fold integral (4.6-5) is the tensor representation of

G(,',',") with respect to {k('} Therefore, Equation (4.6-5) can

be interpreted as a parameterization of G(,,,) with respect to the

Karhunen-Loeve basis { k() " "

This result is significant for several reasons. First, it nails
V ..

down the meaning of the somewhat nebulous expression, "Identification of

the channel operator If()." The cross-correlations of the matrix

representation of £(') can be interpreted as a parameterization of the 0

verv important stochastic Green's function G(,,,) Estimating the

numerical values of these parameters represents a systematic approach to

stochastic operator identification. Furthermore, this approach allows -...

priori knowledge of the statistical properties of f(-) to be incornorai-

ted into the estimator-correlator structure. For example, it ma-

known that f(') belongs to a certain class of channels chirn'tr :-

certain forms of G(,,,') or their mathematical ert-iv, A

scattering function representations [51. More , .

*functions are parameterized by one or -mrt, v,ri t,

particular channel tinder examination.

a
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can be determined a priori, or if it is possible to bound their values i.

based on environmental constraints, this knowledge can be incorporated

into the detector through Equation (4.6-5). Unfortunately, this

interesting problem is beyond the scope of this study, and it is left

as an issue which deserves further research.

4.7 Conclusions

The solutions for 0(.,.) and G(•,-) were derived and studied in

detail. Spectral representations for the covariance and matrix filter

kernels were used to obtain series solutions for the processor equa-

tions. We pointed out the relationship between these representations

and the Karhunen-Loeve expansion. In addition, it was seen that this S

approach sheds light onto several relevant theoretical issues and sug-

gests how to implement the optimal processor.

The second order statistical properties of t(.) are related to the 0

(y){XI parameters. In principle, the channel identification process

could be developed based on this relationship. However, this method has
fundamental limitation. The purpose of this study is to develop a S

a%,a on..purpose

channel identification scheme which can be incorporated into a practical

array processor. Simplicity is of the essence in these applications,

and clearly, the relationship between Ry(.,.) and t(.) presented in the

last section is much too complicated even if is diagonal. A more

compact representation for t(.) is required. This problem will be

examined in the next chapter. re

% %

-r 4.4 '-WP,' P1

.0 ~ ''i -% ?
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Chapter 5 
. 00

A CANONICAL EXPANSION APPROACH TO STOCHASTIC
SYSTEM MODELING AND IDENTIFICATION

5.1 Introduction w d.

This chapter examines the modeling and identification problem in

further detail. In particular, we seek a more compact representation

for £(.) in order to simplify Equation (4.6-3). Clearly, simplifying

this expression is essential if the estimator-correlator is to be

implemented. Of course, the requirements which were spelled out at the

beginning of Chapter 4 must still be met. The representation for f(')

must be suitable for digital signal processing applications. Also,

the channel identification should be signal independent. Once 1(.) is -

identified using a probing signal s(.), we should be able to estimate

the statistical measures of y(.,.) for any arbitrary transmitted

signal. Finally, the representation should allow a priori knowledge of"%

t(') to be incorporated into the detector structure. 0

The derivation is presented in the next section. The solution

immediately leads to a convenient series representation for f(.)

developed in Section 5.3. These results are new and represent an *-- %A_

original contribution to stochastic system theory. In addition, they 9

provide interesting insights into several classical system identifica-

tion theory issues. 
Using this representation, 

we obtain a very 
simple

expression equivalent to Equation (4.6-3). It establishes an interes-

ting connection among detection theory, estimation theory, and sto- -

chastic system identification theory which is examined in Section 5.5. _

S 
°

.~% . .
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5.2 Derivation

In order for the results to be as general as possible, let us pose
9

the modeling and identification problem in terms of a random Green's

function representation for £(*), an input process x(.,.), and an output

process y(.,.):

y(t, w) - £x(t, w) f h(t, T, W) x(T, w) dT (5.2-1)
T

x(.,,) is a stochastic or deterministic probing signal whose properties S

are known and under our control. The final goal is to identify statis- 4,

tical measures of h(.,.,.) in terms of the known properties of x(.,.) ,,,

and the measurable properties of y(','). We shall assume zero initial S

conditions, which is reasonable in the context of stochastic trans-

mission channel identification. N

Canonical expansions of the input and output covariance kernels 0

will be used to identify the stochastic system. Let {k()} be an

orthonormal basis simultaneously solving the following expressions: -o

(t) f Ry(t, t 1 ) k(tl) dt1  (5.2-2)

X (t)  ' 2 k(t2) dt2  (5.2-3)

In general, it is difficult to find simultaneous solutions to these

eigenvalue equations. One approach is based on a generalized eigenvalue -

decomposition of Ry(',.) and Rx(.,.) which will be described in detail

later in the dissertation. There are numerically robust algorithms

0

% P ... e
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available for solving the factorization problem. Furthermore, in a

number of meaningful special cases, simultaneous solutions to Equations

(5.2-2) and (5.2-3) exist. For example, if the input process x(.,.) is

wide sense stationary, and the random Green's function h(.,.,.) is

time-invariant, then complex exponentials satisfy the equations. In

addition, if either the input or output process can be approximated by a

white noise process, then the problem reduces to solving only one of the

eigenvalue equations. This approximation is reasonable since the

probing signal s(.) is under our control. Good probing signal design

can be exploited to simplify the representation and identification of

Next, recall that the system output y(.,-) is given by

y(t, w) = f h(t, T, W) x(T, w) dT
T

We shall make the physically realistic assumption that h(.,.,.) and

x(.,.) are uncorrelated. In terms of Equation (5.2-1), the system

output covariance kernel Ry(.,') is: _

R (tit t 2 ) E{[ f h(t1, T, W) x(t, w) dT][ f h(t2, s, w) x(s, w) ds]*}
T T

Writing Ry(",") in terms of expectations over the individual ensembles

of h(-,,) and x(..) gives:

Ry(t, It) = Eh{[ f f h(t1,rw)h*(t 2's w) Ex{X(tl, w)x*(t 2 ' w
)} dT ds}

.N

%_-
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But

wA

EIX(T, W) X*(s, W)} R R(T, s) W 0 ( T) 0*S
k-i

and, of course,

Ry(tit t2 A~ (y ) k(t) *k(t2

Therefore,

Ry(t I, t 2 ) (Y) k (t) *k(t2)
k-i

Eh f Akx f h(t, T, W) ) dT h*(t, S9 W) ) ds}
k-i T T (5.2-4)

Equating the kth terms in the expansion yields:

f h(t 1 , T, W) 0k(T) dT - hk(w) Ok(tl) (5.2-5)

T

0 %

Notice that the two preceding relationships are eigenvalue equations

for h(-,.,.), which implies that in essence, a Karhunen-Loeve expansion

of h(',',.) is being performed. Substituting these relationships into

Equation (5.2-4) and equating the k-th expansion coefficients gives:

%

p ,
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R (tit t2  (Y) k (t (t

k k
k-i

M X(x) E{hk(w) 1 k(t) 4*(t) (5.2-6)

k-i k k k1 k2

This solves the identification problem. The eigenvalues {X(Y)} are
kS

known or can be estimated from the output measurements y(*,.). Further-

more, the eigenvalues {(X } are known because the process x(.,.) is :
k

under our control. Therefore:

2 (h) = (Y),~x
E{ihk()[2= Xk X yk k k (5.2-7) "

for k = 1,2,... This procedure identifies the second order statistics •

of the random Green's function h(.,-,•).

5.3 Representation of the Random Green's Function 4.

Let us show how a convenient representation of h(.,-,.) can be

found in terms of the basis {Ok(')} and the coefficients {hk(.)}

described in the previous section.

Any bounded function defined on the product space T x T x Q can be

expanded as follows (221:

h(t, T, w) h () *(t) 0*(T) (5.3-1)..

i-I J-1J y*-..\

# *

e.e 1¢.

0..<,° .
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where

h. (w) = f f h(t, T, W) i(t) 4j(T) dt dT (5.3-2)

and the functions

i(t, T) = (t) 0(T)

form an orthonormal basis for the product space T x T. The coefficients

{hij(o)} are the matrix representation of the random Green's function

h(-,-,'), or from a more abstract point of view, the matrix representa- %

tion of stochastic operator f-).

From Equation (5.2-5):

f h(t, T, W) 0.(T) dT = h.(W) *j(t)
T 0

which implies that

h (w) = f h.(W) *.(t) 0*(t) dt = h (W) i (5.3-3) -
ii i 1 j ij0

This result shows that the matrix representation of £(') is diagonalized

provided the covariance functions of x(',') and y(.,.) are simultan- S

eously diagonalizable. Therefore, the random Green's function h(,',) '

can be represented by a single sum series: S
h(t, T, w) I . hk(W) ,k(t) k(T) (5.3-4)

k.- .'*

,t k=,_%k
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Estimating the means and variances of parameters {hk(.)} is equivalent ,.

to identifying the mean and covariance functions of h(-,',-).

5.4 Generalization to the Vector Case

The previous results can be generalized to vector processes.

Suppose x(.,.) and v(.,.) are N x 1 stochastic processes. The

covariance kernel of y(.,.) is an N x N matrix:

%

R (t, u) o = Hy' 4 t) Cu) (5.4-1)

kk lk-k (uk

where the eigenvalues { (y )} and eigenfunctions are solutions 1% % A.

to the equation:

\'. , - ,

y) 
'(y) f Ry(t, u) _k(U) du (5.4-2) \-'4 ,.fV

T

for k 1,2,... kssuming simultaneous diagonalization of Rx(.,*) 1.'

and R(() the eigenvalues {X(j)} and {X Y)} are related as before: .

k k

k" = . k (5.4-3)

for all k, and the matrix random Green's function H(-,-,-) has the

representation: S

Ht(t, T, W ) =I h k(w) ±_.k(t) u (t) (5.4-4)

k-i

N N.

k% -.....

W%%..",.[
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The second scheme to be considered is based on the representations

for x(-,-) and y(-,-) derived in Section 3.4, where

x(t, W) = x . (W) i(t) e. (5.4-5)%

i=1 j=1 4

-N

f(t, W) = I y. .(W) 4. (t) e. (5.4-6)
i=1 j= 1 %. -

S
Assuming the {yij(*)} coefficients are uncorrelated, then

R tw)X() (t) *(u) e. H (5.4-7)

But for a fixed N ii ,c) -

N ()e. e~ H __i _ )UH (5.4-8)
j=1 -J-

where the sun is written in matrix notation:
S

11(i) [ el e- !N: (5.4-90)1

A =Y diag[X~~ (iN. (.-0

Substituting (5.4-8) into (5.4-7) leads to the following simplification

R t, u) = (t) UMi A tTU ) *u (5.4-11)

which will be used in the subsequent derivation. 6,

NI N
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For vector processes: -.

yI(t, W) =f H(t, T, W) X(T, w) dT (5.4-12)

and ,i.

u) EHfff H(t, T, w) R (T, V) 1H (u, v, w) dT dv} (5.4-13) "6
-Y H TT

where an argument analogous to that in Section 5.3 is used. Again, it

r 0

is assumed that R,-- and R (-,-) can be expressed in the representa- ~.

tion (5.4-11) with respect to the same basis Then&).%The

OD N

(x) HH

-(T~Q) U~i) A. U Ci) i(v) (5.4-14)

Substituting (5.4-11) into (5.4-15) and rearranging leads to the
0

following:

1~(t,u) =EH j [f H(t,T,W)U(i)4i(T) __4X1 H(U'V'W)U(i)c .(V)dv]H}N.
lyHi=1 T T 0

(5.4-15)

Equating the kth terms in (5.4-13) and (5.4-14) implies equality only if

J Ht, , w U~) 4kCT dt= k~t) T(k) diag[h1 ()..h w]
T
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%' %

k(t) U(k) U U(k) 0*(u) = kt)1(k) A Ah AxUH(k) 0*(u)%

for all k, and

(h) (C -A = A y  A(x) -  (5.4-16) , .
--- k-k .,:k -uk

Each matrix in Equation (5.4-16) is diagonal; therefore, the identifi-

cation is easy to perform. Moreover, the representation of H(.,-,•)

with respect to {±ij(*)} reduces to: , '4-"-

N~ H

H(t, r, W) = 1 I hi (W) 0i(t) 0*(T) e. e (5.4-17) N,.~i i-- i~ -3 -3 " ,

which is the matrix equivalent of (5.3-4).

5.5 Discussion .. '

The results from Sections 5.2 through 5.4 show how Karhunen-Loeve " -
I

expansions can be applied to the system modeling and identification

problem. Expanding the random Green's function in terms of the

Karhunen-Loeve basis is a fundamental approach to stochastic system

modeling. It simplifies the identification problem, and gives a

representation for £(.) which can easily be incorporated into the

estimator-correlator structure. One can interpret the results as a

transformation of the matrix parameters from an arbitrary basis into .. ,

the Karhunen-Loeve basis, where the identification is easier to perform.

%% %

- y ,,-.
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The results provide several interesting new insights into the

stochastic system identification problem. Applying Equation (5.2-7) to

the original problem of simplifying Equation (4.6-3) yields %

k y )  E(l1k (W) 2X (S) (5.5-1)

where are the eigenvalues of P. This result is deceptively h/..

simple looking; actually, it ties together ideas from several V %A

disciplines. The representation for £(.) was derived in order to 0

(~Y)} (S) Isimplify the relationship between the {X terms and the (X terms,k trsadte(k Itrs

in other words, to simplify the channel identification problem. The

{X y ) terms are needed to calculate the minimum mean-square estimate of 0

the channel output used to compute the likelihood ratio. Of course, the

key to obtaining (5.5-1) is simultaneous diagonalization ofP and Ry,

which in this context depends on proper design of the probing signal 0

s(.), or in the case of more general signals, the use of numerically

robust algorithms solving a generalized eigenvalue problem. The repre-

sentation for 1(.) meets the requirements defined at the beginning of 0

the chapter. It is well-suited for digital processing of the array

data, and it allows a priori knowledge of the scattering channel to be

incorporated irto the estimator-correlator structure.

Equation (5.5-1) also gives new insight into the meaning of the

phrase, "For system identification, a probing signal must be suffici-

ently rich [37) [38]." In terms of Equation (5.5-1), it means that for

(y)) ()each eigenvalue A y  the probing signal eigenvalue Ak must be large

enough so that numerical errors do not occur while performing the

,'..'.'.-NINNI"
,L i ': ' o .. . • " " " " : ' ' "' ' : " V ' " " " " " " . :° :'' '"%
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division needed to estimate the E{Ih k (W)I} terms. This is a key to

good probing signal design, and furthermore, it suggests posing the

signal design problem as an inverse eigenvalue problem [35]. ...P
• .......

5.6 Conclusions

The Karhunen-Loeve expansion represents a fundamental approach to .

stochastic system modeling and identification. Simultaneous diagonali-

zation of the input and output process covariance kernels can be accomp-

lished through proper probing signal design or generalized eigenvalue . ,,

decomposition. The representation for £(') simplifies the identifica-
f... .

tion problem and gives insight into classical identification theory. ,'- "

issues. 
e

.0 %

.% .',

.- . , %

; &~.......?.'

. .. ?" ,," ,m

, ~~~-. ..-.:.-

| • S

| •.
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Chapter 6 ,,

NUMERICAL ISSUES

~W%E
6.1 Introduction

At this point in the dissertation, the mathematical derivations 4
needed to solve for the processor kernels have been completed. We have

asserted that orthonormal representations of the covariance kernels, the

processor kernels, and stochastic operator 1() can be used to obtain "

the solutions. However, several outstanding issues still must be

resolved before the optimal structure can actually be implemented. In %

particular, we have yet to show how the Karhunen-Loeve eigenfunctions

and eigenvalues can be calculated from array measurements. This problem 0

must be examined in detail if we are to go beyond formal manipulations

9f infinite series to a working system. In conjunction with this issue,

the numerical difficulties inherent in any adaptive signal processing •

system must be overcome. How do numerical difficulties arise?

The answer to this question relates to the nature of adaptive
SI.

systems. Recall that an adaptive system is a learning or self- 0

optimizing machine which adjusts its response according to the statis-

tical properties of its surroundings [40]. This is where numerical

difficulties can occur. For example, second order statistical informa- * -

tion is usually estimated by post-multiplying a data matrix by its ..

Hermitian transpose, which causes loss of numerical precision when the

arithmetic operations are carried out on finite-precision hardware. The 0

, *_ ,'* -%

* 4

p., 5"*. . *.:'
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ability to implement an equivalent adaptive processor in hardware

without performing the squaring operation is very desirable.

Since a priori knowledge of the covariance kernels is incomplete,

they must be estimated from array data. Therefore, the numerical W:

problems as described above must be taken into account while designing

the processor.

The purpose of this chapter is to solve the computational and

adaptive implementation problems required to construct the optimal pro- Rx

cessor. We begin by returning to the inverse noise covariance kernel

Q(,), and suggest an approach for computing the Karhunen-Loeve basis..%

The solution requires calculating matrix products, an operation which

should be avoided whenever possible. The singular value decomposition

can be used to solve an equivalent estimation problem, bypassing the ., .
% % "

squaring step altogether.
0

Next, we shall turn our attention to the estimator branch (

The solution is based on simultaneous diagonalization of Ry(.,) and

R(,) using generalized eigenvalue decomposition. Once more, a matrix

squaring operation appears in the solution formulation. Can an equiv-

alent processing system be realized without squaring? . -

The answer to this important question is yes, and the processing is

based on a matrix decomposition which is just now appearing in the

numerical signal processing literature [411. It is called the CS

(cosine-sine) decomposition, and it provides the means to compute G(.,.) -

directly from array data, making the matrix multiplication unnecessary.

,,% 1% ,,

%. 
.

.d". .'VS
: m " %S

i 0. .:-.€,
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Furthermore, it will be proved that this solution is numerically -.

equivalent to decorrelating the expansion coefficients of n(',') fol-

lowed by a Karhunen-Loeve transformation. 9

Finally, we will show how to obtain the data which are needed to

estimate R N(.), Rl(.,.), and by(.,.). It will be seen that y

must be obtained at a high signal-to-noise ratio, as this step

represents system identification.

6.2 The Inverse Noise Covariance Kernel

6.2.1 Example

The computational issues involved with implementation can be

illustrated by considering the following example. Suppose that n(-,.)

is a wide-sense stationary, periodic stochastic process. Find the .

Karhunen-Loeve basis and Q(.,.).

We begin by selecting a basis in the form derived in Section 3.4:

(t) ( t) u (6.2-1)
*1 -3

for j = 1,2..., M, where H is the number of sensors, and for all i.

n(.,.) can be expanded as follows:
%

N

i=-o j=1

and Q(',') has the representation: zZ

1 *

O(t,u) = -n (t) (u ) u 11 (6.2-2) *. ..2ti -:j)~. *~)-j -:.
J=1 )ij

. % "

0

%



'Art ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ www NUExmo wp-wplqurpriupnwjlvjlwvVVW

100

The basis elements must be orthogonal:

0? > 6 6
--ij J --kg 9 ik it 

4and the expansion coefficients must be uncorrelated:

E{n. (w) n* (W)I A(n) 6 6
ij kg ij ik it ..

These identities suggest that we attempt to solve the integral equation

%

Am Zn (t) f R is)0(s) ds (6.2-3).*v*

for all m, and for n = ,.,M. Substituting Equation (6.2-1) into

(6.2-3) gives:

VA %

Xmn rn- n f RN,(t,s) ms u nds

Assuming n(-,-) is periodic with T = 2ni, the integral equation becomesr"
% %A

AU f~ %tu = 1 (T) Om(t-T) u dT (6.2-4)
mn n -n --n .

% -

The proper choice for the scalar basis is the complex exponentials:

0 M t) 1 exp{jnt}

.-. Nip-

% j%
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For a given m, Equation (6.2-4) becomes:

A mu f _%() e -J M T u dr -N 0-(MO Un

where S(.) is the power spectral density matrix of n(.,'), and w0 is

equal to one. Therefore, the equation

Xu = SNmWu n  (6.2-5)

must be solved for eigenvalues {Amn} and eigenvectors {_n} to obtain %

the Karhunen-Loeve basis. Actually, since the eigenvectors {n} are

also a function of m, Equation (6.2-5) should be:

A u = S (m) u (6.2-6)
1in --n -14 -inn. 1%%

Solving Equation (6.2-6) provides the Karhunen-Loeve basis. Of course, •

the wide-sense stationary, periodic signal assumptions were only made

for purposes of illustration. The preceding results can be general-

ized to nonstationary processes as well.

5. ", - , •
6.2.2 A Possible Processing Scheme

The results from Section 6.2.1 suggest a processing scheme illus-

trated in Figure 6-1. Since the scalar basis is the set of complex s...-%
• -*,%. I.%

exponentials, the first step is to compute the discrete Fourier trans-

form of the array data given noise alone. Next, the power spectral

density matrix at each harmonic mw0 is estimated by averaging over the

arrav data. Finally, the vector basis functions are calculated hy %*'.

%, %
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performing an elgenvalue decomposition of each estimated power spectral

density matrix. S

While this sequence of steps is mathematically correct, it is not % ,

advisable for the reasons given in Section 6.1 [42]. The power spectral OP

density matrix estimation involves a matrix squaring operation prior to

the eigenvalue decomposition step. Since this reduces the precision of

the final answer, an equivalent procedure avoiding this step is needed.

This is where the singular value decomposition shall be introduced. •
%

6.2.3 Applying the Singular Value Decomposition

The loss of numerical precision can be avoided if the singular --

',-.-.. .. 
value decomposition (SVD) [39] is used instead of eigenvalue decomposi- "

tion. The first step in an equivalent processing operation is to . .

• %

calculate the discrete Fourier transform as before. Next, consider a e

sequence of vectors {r(k)}. Arrange them sequentially in the N x L -

matrix Ak):

A(k) = Irl(k) r(k) .. (k)] (6.2-7) -
-1 2(k Lk]-

where Li(k) is the i-th M x 1 vector, and L is the number of measure-

ments. The notation is simplified by dropping the notation k. Then A_ -

has the following decomposition:

A " U E VH (6.2-8) le- .-IL

where U is an M x M unitary matrix, V is an L x L unitary matrix, and E

is a diagonal matrix whose elements are the singular values of A. A can

be written in terms of the singular values {oj} and the columns of U and

-- ,%.% %- %*

P. e

* %."PP" ? 4-*,, ..-"
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rH
a (6.2-9)

r is the number of non-zero singular values of A, which is also the rank

of A. Furthermore, the following relationships between the columns of

U, columns of V, and A are met:

A = m r (6.2-10)

AHu = 0m vp (6.2-11)

An eigenvector-eigenvalue relationship is found by eliminating 
_ from Jb-%

Equations (6.2-10) and (6.2-11):

A H  2 'K . 'qa"-

AA u -ou (6.2-12)

A AH is a Hermitian matrix, and a = X

The point of this discussion is that the eigenvalue decomposition "

can be calculated by solving an equivalent singular value decomposition.

The power spectral density matrix estimates are given in the form

A(k) AH(k) (6.2-13)

at each frequen-y k. It is clear from (6.2-10) and (6.2-12) that the

eigenvectors (,f this product are the same as the left singular vectors

of A(k). Therefore, the eigenvectors and eigenvalues of (6.2-13) can be

obtained directly from transformed array data by calculating a singular

value decomposition. The procedure is illustrated in Figure 6-2.

* 4

%e%

%," %% "'

% ,. .%
'4. % "

¢... 0
, . % - " . %,% -. q% ".%,% % %.% " % . , % " % .% " . % % % " %.' % ,."•, " " % " - " -" % " . % .
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The previous discussion suggests how the results in Section 2.5

can be implemented adaptively. Calculating the Karhunen-Loeve basis and ,% :.."

expansion coefficients from an arbitrary expansion requires an eigen-

value decomposition of the Fourier series coefficient covariance matrix.

If this matrix is unknown, it can be estimated from array data:

SA4 A

where A ib a data matrix of Fourier coefficients computed over L

measurements of the array output. Rather than computing the eigenvalue

decomposition of R, a singular value decomposition of A is calculated.

The left singular vector matrix U represents the linear transformation S

needed to calculate the Karhunen-Loeve basis and series coefficients.

6.3 The Estimator Kernel

6.3.1 Introduction

Next, the numerical issues involved with solving the equation

f Rl(t,u) G(u,z) du = R (t,z) (6.3-1) •
T

for G(- ,) will be examined. A numerically robust solution will be

derived based on the CS matrix decomposition. I -y.

%

1 N
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6.3.2 Basic Numerical Approach P"

In Section 4.4 we demonstrated how the solution for G(,) was

constructed by data prewhitening followed by an eigenvalue decomposi-

tion of the modified covariance kernels R,(,) and R'(.,.). Here, the
-Y

problem will be approached from a different perspective. What we seek A-

is a linear transformation which diagonalizes Rl(.,) and Ry(.,)

directly, skipping the prewhitening step entirely. In terms of matrix

representations, this problem can be posed as follows. Find a linear

%
transformation X such that RI and are diagonalized simultaneously -

-%

XH R1 X = diag[al a2 .. . (6.3-2) %

XH Ry X = diag[BI 82 ... (6.3-3) %.

Provided a non-singular X exists, then:

El = X-H Aa X- I  .. ,

where the -H notation denotes inversion followed by Hermitian transpose,

and similarly,

Ry = X-  A8 X-
1

Since G is given by:

G. = R

in terms of X, A_, and A6, G is written: -..

-. .% .% -

'Z'
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- X- s  diag [8l/c ... ] X (6.3-4) INO

The necessary and sufficient conditions for simultaneous diagonali-

zation of two nositive definite, Hermitian matrices are well under-

stood [43]. It can be shown that there exists a non-singular, unique ,.,

matrix X which diagonalizes RI and Ry. Furthermore, the computational

aspects of this problem have been studied extensively by numerical ..

analysts. In this field, the problem is called the generalized eigen-

value problem of the matrix pencil R1 - X Ry [39]. The fact that the

columns of X correspond to the generalized eigenvectors of R1 and Ry

can be demonstrated by rewriting Equations (6.3-2) and (6.3-3):

R I X = X- H diag[a I a 2 . ]

Ry I X- H diag[8 1 82 ... ] ,.-.'-

and by defining E -X-H:

R 1 X = E diag[ l c2 ... ]

S-0y I = E diag[lI B2 -. -

For the kth columns of X and E: "-....

,-. . - ," ,,,
y jk = 8 k Ek

0

2Y 2i -Bke
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Rearranging these relations leads to the following:

R1 jk = (ak/Bk) Ey k = Xk Ry 2 k

which shows that the rows of X are the generalized eigenvectors of R1

and Ry, and that the {nk/Bk} terms are the generalized eigenvalues of RI ,

and Ry. 4.'.

The preceding discussion suggests that G(-,-) can be calculated

directly by solving a generalized eigenvector problem, where G(•,•) is

expressed directly in terms of a generalized spectral representation.

But actually, this solution is equivalent to that presented in Section .,

4.4. This can be seen by defining a filter operator C as the matrix

performing Gram-Schmidt orthogonalization of the noise process Fourier -5-%k

coefficients: *4-. ,-

n'(w) =C n(w) (6.3-5) 0

where

E{n'(w) n'11(w)} = I

C can be written in upper triangular form, and given a positive

definite, Hermitian noise covariance kernel RN, C is unique [44]. -

Now, when the array data r(') are prewhitened by C: 4'. ..

r'()= C r(w) C v(w) + C n(w) = y'(w) + n'(w)

e .% ,. %

% % *,-4%_

0SV

". . .'. ..'.

J,•.
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the covariance kernels of r'(-) and y')are:

R ~r() H = H R H
-1 -~w r' (w)} -1 C + Ii -'+

-Y -Y

Both R' and R' are positive definite and Hermitian, their eigenvectors
-1 -

are the same, and they are unique:

R' UA u (6.3-6) .

R' =UA U H (6.3-7)

Rearranging Equations (6.3-6) and (6.3-7) yields:

EH~~~~ R..U.**[I .

H '(v') *-

U R U diag[X I .

C R(CHv')ig[

-, U R U H= diag[X -y' ..

T intrtes ofU ,y and C :aeUiuteeoe

H H (yC

XH=U C=OR(6.3-8)

A



which equates the eigenvectors of R' and R with the orthonormal-

H %
columns 0 of the QR factorization of X , and the whitening filter C _ -__

with matrix R. The {a } and {B I terms are the eigenvalues of R' and ZY "N4
k k

R' respectively. Therefore, solving the generalized eigenvalue problem
-y 

%

is equivalent to decorrelating n(.) followed by a Karhunen-Loeve trans-

formation.

. %J. ' V 4

6.3.3 Implementing the Estimator Pranch with the CS Decomposition

We have seen how to implement the estimator branch using the gener- 0

alized eigenvalue decomposition, and in principle, this part of the pro-

blem is solved. In this section, we consider how implementation can he ',

accomplished in a numerically robust fashion.

Maximum likelihood estimates for R 1 and can be constructed by

averaging over independent array measurements. The procedure begins by %

calculating the appropriate Fourier series expansion coefficients:

r ( ) < rd I >"""'• • . , ,.•

rk(w) = < r, ±k >

and so on. This step is repeated over L measurements, and a data matrix %

• _.

A is constructed : 
,0:., .-

A H =[rI E2 Lk ... " -.-.

The kth column of A
H contains the L coefficients calculated with respect ".,t,-

to the kth basis function. Finally, the estimated covariance matrix R1...+.'..:-..

- % %

* . " ,t

is formed by calculating the product ,---

rk~u) <%r, k > .%

*% .. ~ .. + ..

AH = [r 1 r..... ri° ...

. ... - 1
The th olun o AH ontinstheL coffiiens clcultedwit repec
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H~9 
'.A/.R A A (6.3-9 )

The signal alone covariance kernel must also be estimated from

array measurements. Of course, the signal £s(-) is always obscured by %! J.

additive measurement noise, meaning that it is not possible to estimate

Ry directly from data. However, if the signal-to-noise ratio is large

enough, the array measurements can be made close to signal alone:

r(w) = y(w) + n(w) y(w)

V % 1

Since the probing signal is under our control, high signal-to-noise % %

ratio measurements can be obtained by adjusting the probing signal

energy. By repeating the processing steps described above, a data

matrix B which approximates signal alone measurements is formed:

- H = Y l Y2 .. . *. ,7U -

and R is estimated by

HS
= BH B (6.3-10)

--

Finally, the generalized eigenvectors and eigenvalues can be calculated % "f

by solving the system

A H A k = Ak BH B !ik (6.3-11)

for its eigenvalues and eigenvectors.

In order to solve Equation (6.3-11) without squaring, we propose a

new approach which is just now becoming known in the signal processing

7 - ,

'4"3;"";

." -I--

. ," ," 3 .••" ,,", 4 ,""'". , ,."",..*"t. "-"'"""~ . ,"

,- , ,,-. , 2 ,,'., • ".' " -.. ,,, '.-, .. 4''-... .... 
.. 4'
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community [41] [45]. The solution uses the CS decomposition, which 
%,-

will be described in the next section. S

6.3.4 Solution r"

The CS (cosine-sine) matrix decomposition 
arises naturally in the

context of the AH A - X BH B generalized eigenvalue problem. This 5

system can be solved by CS decomposition directly in terms of A and B.

Suppose

%

R (6.3-12) -

is the QR decomposition of A over B. Writing OI and Q2 in terms of

their singular value decompositions gives

2= C E-Y (6.3-13) -

22 = U2 S V(6.3-14)

where r

4 

%

C diag(c i )  
P e '

and 

,

S diag(s i ) .+ "

The {_Si} and {si } terms are non-negative, U1 , TJ2, and V are unitary, and " ;;7

C2 + s2 I

V.

N. N," -% % -

'a. . ,'"

Ze IP.
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By setting %

X = (VH R)- 1  
(6.3-15) ,

diag[c 1 ... aNI = CT C (6.3-16)

diag[ 1 ,,• BN] = ST S (6.3-17)

% %

then

XH (AH A) X = diag[a I ... ,N,

XH (BH B) X = diag[ 1 •.. 6N]

0

and it follows that X is the matrix simultaneously diagonalizing AH A

and BH B. Therefore, using this approach, the estimates for X, the §
generalized eigenvalues, and C can be calculated directly from array_S

data without performing squaring. , %

The preceding discussion leads to the following processing steps

needed to calculate G: Form data matrices A and B based on appropriate

Fourier series representations, such as the discrete Fourier transform.

Next, calculate the QR decomposition of the A over B matrix. Third,

calculate the singular value decompositions of 01 and 02. Fourth, form
• -

X from the V and R matrices obtained in steps three and one respec-

tively. Finally,

%

G = x-H[sTs][CTC] -1 XH (6.3-18)

, . . •-%

.....................................................................

~5.. .. '..5....--,-..,-..
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6.4 Adaptive Covariance Kernel Estimation 
''

Several details involved with covariance kernel estimation must be . .

worked out. Since these estimates depend on array data, it is clear do

that the proper information must be used to construct the estimates. J.

For example, RN(-,-) must be constructed from measurements given no

signal present. Similarly, both signal and noise should be present in A!,

the measurements used to generate data matrix A. However, these steps %

present a dilemma, since the processor is designed to perform detec- % -.

tion. How can the covariance kernel estimates be constructed without a ,.

priori knowledge of the correct hypothesis?

The answer to this question relates to the fundamental nature of ,-

adaptive processing systems. Building the covariance kernel estimates

is a learning step in which a priori knowledge of the underlying data

structure must be known. Therefore, in order to determine RN(',') and

we will assume that a priori knowledge of the correct %

hypothesis is available. %

In the active detection problem, one can use the scheme in

Figure 6-3 (41. Here T' is the return travel time of the probing sig-

nal, and T is once again the observation interval. The noise covariance

kernel estimate can he formulated during the interval T', and used in

subsequent detection. The signal plus noise kernel is estimated over .: --

the time interval T.

Calculating the signal alone kernel is not quite as straight- 16

forward, since signal alone measurements are not available. However,

% %
. p * a- = W
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the probing signal s(') is under our control, and if its energy is large

enough, we can argue that:

r(t, w) £s(t) + n(t, w) fs(t) (6.4-1)

and by proper scaling of the data measurements, the kernel Ry(*,)

corresponding to the data measured over the time interval T can be esti-

mated. Clearly, a high signal-to-noise ratio is needed during this J,

step. This is reasonable from a system identification point of view, %

since Ry(',') represents the second order statistics of an unknown

linear system. System identification is fundamentally a high signal-to-

noise ratio process. Of course, once the data matrix B is formed at a

high signal-to-noise ratio, the solution can be incorporated into the

detection process, which is generally carried out in low signal-to-noise

situations. •

6.5 Conclusions

We have examined the adaptive implementation issues in some detail

and have proposed processing schemes hased on robust, state-of-the-art -F- % %

numerical algorithms. Our results have established interesting con-

nections between several canonical matrix decompositions and the spec- %

tral representations of Q(.,.) and G(',') presented in Chapter 4.

It is clear that the singular value decomposition is a verv useful

numerical processing tool. The eigenvectors and eigenvalues of the

estimated power spectral density matrices were obtained directly from

data matrices without performing a squaring operation. In another con-

text, this decomposition could he used to estimate covariance matrix

0. .

• a ' .

0%.-...
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eigenvectors from array measurements. The advantages of this approach

are well documented [46]. %
•0

We proposed using the CS decomposition to solve for G(-,o) numer-

icallv. This method is equivalent to noise coefficient decorrelation

followed by a Karhunen-Loeve transformation. Furthermore, the CS *

decomposition solves for the generalized eigenvectors and eigenvectors

of RI(,) and Ry(-,) directly from data matrices, once again making

matrix multiplication unnecessary.
0

Finally, we showed how to adaptively estimate the covariance

kernels from array measurements. This part of the problem must he

interpreted as a learning procedure performed prior to detection.

Ry(,.) must be obtained at a high signal-to-noise ratio, since this

represents a system identification procedure.
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Chapter 7

NUMERICAL EXAMPLE: DETECTION IN MULTIPATH CHANNELS

7.1 Introduction %

This chapter has two purposes: first, to compare the performance

of the optimal processor to that of suboptimal methods, and second, to
. .
% - % ,,_

verify through numerical simulations that the processing schemes pro-

posed in Chapter 6 are correct. We have selected an example of signifi-

cant practical importance; specifically, detection in a multipath 0

propagation channel, where the signal arrives at the array in several

partially or fully correlated wavefronts.

In Section 7.2, the problem is posed and the measurement model is ,

derived in detail. Next, expressions for a meaningful receiver perfor-

mance criteria are evaluated. The results will be used to compare the

estimator-correlator processor with suboptimal processing techniques in .

Section 7.4. The performance of the generalized eigenvalue decomposi-

tion is evaluated in Section 7.5, and finally, the relationship between

identification and detector performance is examined in Section 7.6. '.,- .

7.2 Problem Formulation

The environment and specific array geometry which will be examined

in this chapter are described in this section. A narrowband signal

s(.) is transmitted into the medium. In a multipath propagation

channel, the returning signal arrives at the array from p directions.

The matrix representation of t(.) was derived in Section 3.4.4, and in ,,.'''

terms of this model, the desired signal v(",") is:

.- :..-.-,

%
N 'VV

5.*. • %*
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%

y(t, w) =s(t) = ( bw) vk s(t) (7.2-1)k =1 k 4-

where v is the steering vector associated with the kth arrival direc--k %.

tion, and bk(-) is a complex random variable representing path loss and .

phase shift effects.

The noise process has two components: spatially uncorrelated sen-

sor noise, plus correlated noise from an angular spread source. The

spread source is large with respect to the signal wavelength, meaning S

that a point scatterer representation of this component is inadequate., - is

Its value at the ith sensor is: 1%

n (t, w) = f b(G, w) n(t - t.(0)) dO (7.2-2)

, %. %.

Assuming a narrowband n(-), and approximating the integral with a sum __ - ,.i

leads to the following model for the colored noise component:

b.(w) v. n(t) (7.2-3)
i=1

where the {bi(-)} terms and {i} vectors are analogous to those dis- % %

cussed previously.

Evaluating the optimal processor requires the second order ,

statistics of the signal process, the noise process, and the signal plus

noise process as measured at the array.

% i-

-%e.

I- ","'.p" ,0
"

, = -. ".

', , , , - . , . , . . . . -, ., . . .,,, , . ., . , - . , . , . .. . , ,. -. , . . .. . , ." -,* ''" ',
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The covariance matrix of y(-,') at time t is:

p p h0
Ry = {[ bk VkS(t)1 [ bt vs(t)] % 'Me

H 2 = p H 2

k=1 X=l k=1 Z=i Lk%- I%

2 H

arriving~~~~ ~ ~ ~ ~ ~ plna _-vfrot, a sth ina-owr nd_ i h

kkA

v I v1 2 ... v ] (7.2-4) '

k-p

is a Vandermonde matrix whose columns are the steering vectors of the -- ,

arriving planar wavefronts s the signal power, and is the path

5 is RBi

sS

correlation matrix of the {b (.)} coefficients Of course, the wave-

fronts are uncorrelated if E{b k b*} is identically zero when k 2.

The noise covariance matrix is t sm

__N= 2 I + 2 N --BN --N(725-"" " ,1

22
where °w is the sensor noise variance, V N is a matrix whose columns are • '-]
the steering vectors (v.}, and R.N is the covariance matrix of the path ": ':::-...-..

coe fficient s. ,"-.-. " _-"-1

Finally, the signal plus noise covariance matrix R1 is the sun of

RN and Rv, because we have assumed uncorrelated signal and noise compo- %

nents.,\' '\

'!'

IN.

p 0



122

The optimal receiver for a snapshot of data is

_" H -1" -1

A(r) = rH (R-N - Rll )r (7.2-6)N "1
and the estimator-correlator form of A(-) is

1  H -1 r (
A(r) r (7.2-7)r- (RN r) R- --. ,r "

This processor is seldom applied in practical array processing

problems. In practice, when the arrival directions in a multipath

channel are unknown, a set of closely spaced steering vectors is used to ..

cover the sector from which the strongest return is expected. The .

r
* steering vectors, multiplied by the known signal s(t), are a set of

spatial filters matched against deterministic point sources immersed in

an anisotropic noise field. The suboptimal log-likelihood ratio -' -';

A (r) = rR v(8) s(t) (7.2-8)

is computed for each steering vector, and the maximum value is used as 0

% the test statistic. . le% e.

Clearly, it is easier to calculate (7.2-8) than to identify Ry and ..

implement the optimal structure. Is optimal processing worth the added 0 -

complexitv? In order to answer this question, a meaningful performance

criteria is needed by which the structures (7.2-7) and (7.2-8) can be ..-..

compared numerically. This will be addressed in the next section.

.. ..-

q ., 4,4 ,'*
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7.3 Derivation of the Detection Index

7.3.1 Definition and Significance

S

We shall use the detection index as the performance criteria: Oft % ?

% %.

where s is the log-likelihood functional. This is a meaningful criteria 4-.

for two reasons. First, the detection index can he interpreted as the *-..~

output signal-to-noise ratio, which means that the processing gain of -

both structures can be calculated and compared. Also, it can be shown .w-

that A relates the detection probability to probability of false alarm:

1+A (7%2P= P (7.3-2).
F D

Clearly, for a given detection probability, A should be as large as

possible to minimize the probability of false alarm. Equation (7.3-2) ..

can be used to construct receiver operating characteristics for the 0

estimator-correlator and the siiboptimal processor. The significance of .

these criteria is well documented [44](47].

7.3.2 Derivation for the Suboptimal Processor

First, the suboptimal detection index will he calculated. ,.

Equation (7.3-1) can he evaluated in terms of the channel output .,
7.

fs and the estimated channel output v. The latter term represents the '. ".

processing signal which is correlated with the filtered version of r(t).
.. r We

%"
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rhe likelihood ratio is

Z(r) = rH R (7.3-3) 0
-- -N- -

and

H 2H -1 *12 H -1E {IX1 2  I Hl} = E{Ir E{(r R ) (r R y))-R - - N "-"N y )

-H -1 H -E{(0) R r rR ()} =
',, "N 

- - - N 

-

-H I~ H -I -H -1 11 -1E(Y) R- ( s)( s) R- (y)j + E{(y) R nn R (y)} (7.3-4) -
- - N -N - - N - N -% ,

The first term is: ,

H -1 --H--1-2

R- ( s)( s) N R) = Efl(ts) R N (7.3-5)_...3-5
-N N -N,

and the second is: -

E( H R -H nn (v)} (v) R (v) (7.3-6)- - - - -N --. 
.- . ..

N0

Therefore, ,. . .

2H -1 + _ - (37SI I I H ( s)H R () 2  ( R)H (7.3-7)

Furthermore, ..

5N;'

k 2 H H ( ) 2 1HH 1 1F{=R- E{(v) R-nn R-(

E{ILI 2  I HO E
0

u - 1 
_E( ) R ! I - ( )

SN -N --N

- . _

a.% 

.- 4-,,d,5 ,.,.,,. - - ,k,,.... , . . . . % . .% . .... ' . , .'. . .-. + '.',:~ .-. .- / .... :.:. . .,., .'.,.
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(i H R-1 ,,) %

The final result for A is:

A - (7.3-8)
(~HR (v)

-N

This expression will he used to evaluate suboptimal processing0

perf ormance.

The processing signal v used in (7.3-8) is the scalar signal s(t)

multiplied by a steering vector. Denote the steering vector hy v(6).

Then Equation (7.3-8) becomes

A -1 2 (7.3-9) -e
v (8) RNV(e) Is(t)I

Evaluating A in termis of the measurement model (7.2-1) and the correla-

tion matrix LBis useful for computation. Writing the numerator of

Equation (7.3-9) in terms of the measurement model gives:

H -2 H -1 2
E (ts) RN v(9) S(t)V} E{ b~ vX s(t)] R vO ~)

k=1 N

Expanding this expression yields

P H -1 2 41%O

k I k -k -N

7 7 %
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In order to express Equation (7.3-10) in terms of ~dfn h
.LB, ~ ~ ~ deie h

Hermitian form

H -1

vk v R v(1) (7.3-11) %%%%P
kO~~ -:I

Then

H -1 2p2
E{ IbI b =E k ) bk E{)I =dI L k VkOlk=1 k= I__

p p
E{~ b~ b~ Vk v~ (7.3-12)
k=1 Z=1

where, for simplicity, we have dropped the w notation. Rearranging

Equation (7.3-12) gives

P~ P

p ~ p v H R 2 (7.3-13)0

k=1 k=~1 k Z -k i -B- s

where

and from (7.3-11), **

V,9 R' V(O) (7.3-14)

We recall that vi is the ith steering vector. It is easy to show thatS

the denominator of Equation (7.3-8) is

%
e P

S.5
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H -1 2vH(e) RN v(6) Is(t)I

Combining these results leads to the result "

H-o 
(7.3-16) 

A H -1 - as (.-6v (e) RN v(6)

More will be said about (7.3-16) later when specific situations are - .

considered. •

7.3.3 Derivation for the Optimal Processor .

A closed form solution for the optimal structure detection index is

most easily derived by expressing the log-likelihood ratio in its

Hermitian form representation: J .- .

i(r) rH.R( - )r (7.3-17)

. U . %,

Since r is normally distributed under either hypothesis, evaluating

E{IZI2 I H0} and E{I 2  Hl} is equivalent to calculating the expecta- 9

tion of the product of random Hermitian forms. The solution for multi- F .*%
%, % %I

variate normal distributions is well known and available in the statis-

tical literature [48). Using these results leads to the following: -

-2 2%
E{ l 2 I } (trace [(R - R R

+ 2 trace [(R - R) ( -1) R l  (7.3-18)
-N - 1~N - l -I

The arguments of the trace operator can he simplified since

%.. %

,%U

2 'N'-.:<S
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-. 1 -i -1 1

(RN R ) R R R 1 - I = R (R 1 - RN ) = RN1 R (7.3-19)
-N -1 - NI N -N- -N) -N -y

Substituting (7.3-19) into (7.3-18) gives

2 -1[t2+2etrace2-1 2

2 H [R y) 2trace e[(RN R v (7.3-20)

A

Furthermore, it is easy to show that %

E{!I2 I H [trace (R- R 2 + 2 trace [(R 2 (7.3-21)
H0  -Y - -y 4*.-.*r if

Therefore, the detection index is evaluated by substituting these

results into Equation (7.3-1).

7.4 Numerical Simulation Results 'n

7.4.1 Experimental Description

Equations (7.3-16), (7.3-20), and (7.3-21) were evaluated numeri-

cally on a general purpose computer. The results which will he presen- e.%

ted in this section are representative of many scenarios that have been

studied.

The array consisted of eight omnidirectional sensors spaced equi- :..

distantly. The wavelength-to-spacing ratio was 0.5.

The signal and noise sources used in the simulation were both in . -

the far field. Wavefronts which represented the desired signal arrived

at the array from -50, 0, and 50 due to the multipath propagation - '. ..

channel £(). The array look direction for suboptimal processing was

00. The anisotropic spread noise source subtended a ten degree angle
..

I • ,

• "4,. "4 . '. . ¢ . , : % . 4 / °: :3 : " ' '
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and was centered at 5' with respect to array boresight. Correlation

coefficients for the signal wavefronts were given by:

2
(0 k - ) 21T (0 k-0)

E{b (w)b*(w)} e= p j (7.4-1) wkk z 150 J 360 (7.4-1)

where Ok is the arrival direction of the kth wavefront in degrees. This .-

expression was used to calculate the entries in RB. It was also used to

generate the entries in the noise wavefront correlation matrix RBN,

implying that the signal and noise processes have similar statistical
2 2 2

properties. The parameters as) UV and a were adjusted to vary the

input signal-to-noise ratio.

The input signal-to-noise ratio was defined as the average signal

power summed over the array divided by the average noise power over the

array:

: ,.'V . 7,

SNR = 10 log (trace Ry/trace 2N) (7.4-2)

7.4.2 Optimal Versus Suboptimal Processing A. "

Figure 7-1 illustrates processing gain as a function of input ,.

signal-to-noise ratio. These results show that optimal processing
%..- v,

affords at least 8 dB improvement over suboptimal processing.

Receiver operating characteristics for input signal-to-noise ratios ... -

of -20 dB, -12 dB, and -9 dB are presented in Figures 7-2, 7-3, and 7-4,

respectively. At very low signal-to-noise ratios (less than -20 dB), S

the performance of the estimator-correlator is not significantly better

, .. f,. £,'

%

,...',$,'..
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than the suboptimal processor, because in both cases, A is small, and % .

the sum i + A is approximately one. Therefore, the eight dB processing 4"

gain is not translated into an improvement in detection probability for % %,

a given false alarm rate. However, once the SNR is greater than -20 dB,

improvement with respect to this criteria can be clearly seen.

7.5 Calculating the Estimator Kernel

7.5.1 Introduction

The second half of this study actually has two purposes: first, to S

demonstrate that the generalized singular value decomposition can be . .

% % %

used to construct G(',') directly from data, and second, to determine e e

what signal-to-noise ratio is needed to estimate Ry(..) (or to form S

data matrix B). This is an important parameter. Of course, the probing '

signal is under our control, therefore in principle, the input SNR could

be raised to any desired magnitude. However, in practical situations --.

this is clearly not possible; therefore, the ability to estimate Ry(.,)

and £(.) at a moderate SNR is highly desirable. If an input SNR of 80

dB is needed for identification, one can safely conclude that this -

approach to adaptive implementation is impractical! % % %

', %,''. .

7.5.2 Experimental Description "'

The multipath channel model, noise models, and array model are

identical to those presented in Sections 7.2 and 7.4.1. Both Ry and RN %

were normalized so that each had unit trace, meaning that the nominal

input SNR was 0 dB. . .

P . __

;-)
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In order to generate simulated array measurements, a standard IMSL . N

routine was used to first generate sets of white Gaussian noise. Next, ,

the white noise was formed into random vectors, and filtered by the .

square roots of R and R in order to construct random vectors. After

filtering, the random vectors represented array data given signal alone

and noise alone, respectively. Noisy measurements of the channel output

were constructed by scaling the signal alone vectors and adding them

to the noise alone vectors.

7.5.3 Results . . .

Several generalized singular value decomposition algorithms were ,
% %

made available to the author courtesy of Charles Van Loan of Cornell S

University. After modifying several of them for complex-valued :

matrices, they were tested in two ways. First, we attempted to calcu-

late G from the square roots of the actual covariance matrices R1 and 0

Ry. To do this, their eigenvalue decompositions were computed, and

matrices A and B were defined as follows: (7.5-1)

_1/2 1 /2 "'" " -
A -t1 = -1 U (7.-1 ) -.'e'- -'

1/2 1/2B=R = A U (7.5-2)- -y -y -y • -i

It is clear from Equations (7.5-1) and (7.5-2) that

.°, "°°-•."°.

A8 A =_(7.5-3) .,

BH B Ry (7.5-4) %

* -

] % °,"- ." - "



136

By following the procedure in Section 6.3.3, it should be possible to %

calculate G from (7.5-1) and (7.5-2).

We found that the procedure discussed above worked perfectly. The

result was compared with

G = R
-y,

and the answers matched exactly. We concluded that the algorithms "

worked correctly, and that it should be possible to compute G from data.

Next, we attempted to calculate G(-,.) directly from array data "*-.',- -e

matrices. Data matrix A was formed from 256 array measurements given a

priori knowledge that HI was true. The data matrix B was formed by

increasing the probing signal power, taking 256 array measurements, and

then scaling the matrix by a factor of I/is . This step normalized the

trace of R to the proper value, which in this example was unity. The -
_V

dimensions of A and B were 256 by 8. These matrices were input into the
". '.*L

generalized singular value decomposition algorithm, and the processing ,'. --"

steps described in Section 6.3.3 were followed in an attempt to compute

Unfortunately, these attempts were unsuccessful. The data matrix B '°-

was constructed at signal-to-noise ratios ranging from eight to 25 dB,

and in all cases, the algorithm was unstable. We do not know why the

algorithms did not work during these trials; however, since the algor-

ithms are very new, it is likely that the computer programs have not

been perfected. .,-

:,n ,~~~... - .c* A A -1 tm'.p .* ,',.

'-"0. 4
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Another approach to the problem was tried. Since the algorithms

worked for the square roots of Rl and Ry, we computed the covariance

matrix estimates R and R by
-1 -y%

. *%- %

R =A AH B, " , . '

Of course, this procedure defeats the reason why the CS decomposition 0

was proposed in the first place, but we wanted to demonstrate in prin- .. /.

.

ciple that G(-,-) could be constructed from data!. Next, eigenvalue ,.- .•

^H

decompositions of R and R were computed, and their square roots

-1~. -Y'.A .P

wasmpropose inrtesfirst plceut wnecto .wantcrred tot deostaesnpin

tipe thuate roots oul bhe cstntructedinc fr mdat!iext intevatemp

deomoits pofc wand suwresfl coptad theroeir sqcuae rootsmte

-y

formed. The processing procedure in Section 6.3.3 was carried out using

the square rowts of the estimated covariance matrices in another attempt

to obtain G(a,') from array data. a

This approach was successful, and furthermore, accurate estimates

ofly could be made at moderate signal-to-noise ratios. An input SNR ofv.-'

15 dB was sufficient for excellent identification. This judgement was ,.-% , ,

.- *% . %

empirical, because we compared the actual Ry to the estimated matrix" ...- '

element by element. As the input SNR was increased, we found little '" ,'

improvement after an SNR of 15 dB was attained• We concluded that the"-

identitication scheme is feasible, and can be carried out at a moderate ".- -.. %,.

SNR. Although it is not possible to generalize these results with *,.,€ '

absolute certainty, it seems reasonable to conclude that they carry over --

to other channel models. %.....

* . . - o -

N"-' - °% .

• -% ,, %, " .° % .. . , % .k- .. .. % %o,.. " ,- .-.- , -,- .'. - .o.. • -.-.. .-. .-.-.. .- ., - . ". "., . " .'. // % .'-'..' 4.'.°'.' .'.

" -'" " ' " ' " £,,_£.,_jj -" -" -" • - ." • " " " " " " • "-" -"-"-' • " .. . - " -,- -° .- - , -.S .
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The results from Section 7.5 demonstrated that Ry.' could be _'_

* ..'. ?

J ~identified accurately at moderate signal-to-noise ratios. However, they .2....

did not made a connection between identification and optimal processor

-.. .. '

performance. Therefore, further experiments were conducted in order to

determine how well Ry(',) must be identified to obtain processing gain

improvement as compared to suboptimal methods.

The channel, noise, and array models were identical to those
% . %

* presented in Sections 7.2, 7.4.1, and 7.5.2. The optimal detection

. index A (Equation (7.3-1)) was evaluated for Ry(") identified at low e."
.Ey

and high signal-to-noise ratios. Closed-form expressions for E{J12H]} 0

and E{I£12Ho} given misidentified _ can be obtained; however,

* they are difficult to evaluate analytically. Therefore, Monte Carlo

methods were used to evaluate A. S

4. The results of our experiments are illustrated in Figure 7-5. They

w- are interesting and intuitively pleasing. As the signal-to-noise ratio

increases, the processing gain approaches the theoretical predicted 0

maximum. Little processing improvement is achieved above an identifi- ' -.. .

cation SNR of 15 dB, which makes the connection between receiver per- . .,.

formance and the empirical observation made in the previous section. 0

However, the most significant conclusion of this experiment is that even

a poor identification results in improved detection. Perfect identifi-

cation at high signal-to-noise ratios is not needed. 0

•2..

S.e
- * \\..°. . "
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7.7 Conclusions

Matrix representations can be used to model non-trivial propagation
%

and scattering channels, and are a useful tool for computer simulation

experiments. In this chapter, they were used successfully to evaluate

the estimator-correlator processor, compare its performance against a 0

suboptimal receiver, and to generate simulated array measurements for "

testing new computational algorithms.

The relationship between identification and receiver performance

was examined. We found that perfect identification was not required to

improve processing gain. Even a poor identification conducted at a low , "

SNR resulted in some improvement.

Also, the performance of optimal versus suboptimal processing was

evaluated numerically. It was found that optimal processing gives at

least eight dB improvement over suboptimal techniques. For input .

signal-to-noise ratios greater than -20 dB, this translated into an

improved receiver operating characteristic. -

The performance of new generalized singular value decomposition ,

algorithms was evaluated. We had some difficulties with them, yet were

able to show that G(•, " ) could be computed in principle. There is
-I-

nothing incorrect with the proposed processing scheme. The programs -. X
, % -

which were tested are new, and require further testing and debugging.

.%.

%'% %- % % %

-S 4. ".* "5%,°

4 '%•%o.' , •
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Chapter 8 " %

.' %

CONCLUDING REMARKS

8.1 Conclusions

The estimator-correlator processor establishes fundamental connec-

tions among detection theory, estimation theory, system modeling, and

system identification theory. Variations of this canonical structure

solve the detection problem for the generalized exponential class of

signal and noise distributions. This result establishes a basic

connection between detection and estimation theory.
% .
%~ %

An operator theoretic approach to the channel representation

problem allows the detection and modeling problems to be solved for a

very wide class of transmission media, especially spread channels, which

are particularly difficult to handle. Moreover, this systematic

approach made the full power of Hilbert space theory and functional 0

analysis available for use in subsequent derivations.

Matrix representations of bounded, linear operators are useful for -. ,

modeling a wide range of deterministic and stochastic transformations

one might encounter in practical array processing problems. They are -..%.%

easily incorporated into the estimator-correlator structure. Identifi-

cation of f(') as represented by matrices is needed in order to calcu-

late the conditional mean of the channel output fs(t). Measuring the

matrix element cross-correlations represents a systematic approach to

stochastic Green's function identification. 0

The channel identification problem can be simplified through

simultaneous diagonalization of the input and output covariance kernels.

0 4"."-.'
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Simultaneous diagonalization can be accomplished either through signal

design or generalized singular value decomposition. The result

establishes an interesting connection among detection, estimation,

system modeling, and identification, and in addition, provides new .

insight into classical system identification issues. The Karhunen-Loeve

expansion furnishes a fundamental structure for stochastic system

modeling and identification.

Solving the space-time processor equations through orthogonal

decompositions represents the most important accomplishment of this . F .h

N% %

dissertation. Karhunen-Loeve representations are the key to both

theoretical analysis and adaptive implementation. Important connections

between this expansion and other decompositions, including the singular -*

value decomposition, CS decompositions, generalized eigerivalue factori-

zations, QR factorizations, and generalized Fourier series have been

made. Combinations of these canonical decompositions and orthonormal

representations provide the key to implementing the processor with

numerically robust algorithms.

The array processing algorithms proposed in this dissertation are - N-N

more than academic ideas that can not work in practice. They were

thoroughly tested and they work well. The computational burden is worth

the effort, because optimal processing is significantly better than

simpler suboptimal techniques. Identification can be carried out at

moderate signal-to-noise ratios. Moreover, perfect channel

identification is unnecessary. Even a poor identification improves

receiver performance.

%

-I. % %
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8.2 Recommendations for Future Research ,

The numerical problems involved with implementing the estimator-

correlator must be examined. It is not known how finite-precision word

lengths, matrix ill-conditioning, and channel misidentification work

together to affect the performance of the estimator-correlator.

Understanding these effects is crucial in order to build the processor

in hardware. ... '. "

Several theoretical issues warrant further research. For example, 0

some recent work suggests that the structure of L(') gives insight into .

"how far" a stochastic system deviates from stationarity. This idea .';-

needs to be developed, since it has the potential to give new insights -

into stochastic system characterization. " ** ,

In this dissertation, the theoretical foundations of optimal space- .

time array processing have been examined at length. We demonstrated how .. -.-
%

the processing equations can be solved and implemented with robust

numerical algorithms. It is clear from Chapter 6 that implementing the -

processor is very demanding computationallv. However, the data flow and

computations are regular, repetitive, and well suited for parallel

computations by distributed processors. Algorithms for performing %

singular value decompositions and CS decompositions that are amenable to

parallel processing or systolic array implementation need to be

developed. Solving these problems will require new basic computational

cells and new methods to assess their computational complexity. 7-%_- ,

Developing new basic computational cells will require a deeper -

understanding of the fundamental structure of computational algorithms.

N N N.vN %.
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For example, a basic algorithm used in many signal processing operations -

is the generalized coordinate rotation [49]. In many applications, it

can be regarded as more fundamental than even the traditional floating
I'F

point operation (complex multiply-and-accumulate). Surprisingly enough, $'.

the generalized coordinate rotation algorithm has a fundamental connec-

tion with Lie group theory, an abstract mathematical discipline 150).

More work in this area is needed to establish deeper connections between

Lie group theory and basic signal processing algorithms.

The connection between the work presented in this dissertation and

other basic research areas in adaptive signal processing is presented in

Figure 8-1. The overall effort calls on disciplines such as Lie group

theory, graph theory, and information-theoretic analysis of computa-
% % .,%".

tional complexity, in addition to stochastic operator theory, numerical -

analysis, and integral equation theory. All of these tools contribute 0

to the understanding needed for efficient optimal array processor

design.
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APPENDIX '

CONTOUR INTEGRAL EVALUATION '

Calculating the matrix representations for the operators appearing

in Sections 3.2.3, 3.2.5, and 3.2.6 requires evaluating three definite

integrals. 9 -

The representation for the time delay operator is: P,,

<A = sin a(t T - mT) sin i(t nT) dL (AI
<A 0r sin1 - n

mn n T(t - T - mT) a(t - nT '..

To evaluate Equation (A-i), begin by simplifying the product in the % % ,%

0
numerator using the trigonometric identity V.- -P$*. .

1 1- '' -' l
sin a sin 3 = - cos(a - 3) - cos(a + 8)

2 2

By setting a = Ur + maT and b = naT then

sin a(t - T- mT)sin a(t - nT) = sin(aT - a)sin(at - b) = !"e'..

- cos(b - a) - cos(2at - (a + h))

and (A-i) becomes

amn = a ) (t co( - ) d - 2 cos(2at - a + b)) dt.,A"")
-n 2 a a)(at -b) 2T _J (a at -b)

. .- ,- ,,.

% %

N ~ --- P-

-. ' * . * * - **%~ p ., ** *- -'-N
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Evaluate the first integral in (A-2): . ....

cos(b - a) dt = cos(b - a) dt -(A-3),

2T (at -a)(at - b) 
2  (t la)(t /a)

2,Ta., p *1

Convert (A-3) into a contour integral on the z-plane:

cos(h - )dz(A4

r- (z - a/a)(z - b/a)2Ta C -.i.

where C is shown in Figure A-I. Reference [511 shows that -

dZ % , ,

f (z -a/a)(z -b/a) 7f f(z) dz = i Res f(z) e
C C

with Res f(z) meaning the residue of f(z). The residue at x a/a is

1 = a '.-.'''

a/a- h/a (a - b) - .-.-.

The residue at x = b/a is

I a

b/a - a/a (b - a) ,

There fore,

dz S . - -

(z - a/a)(z - h/a) =0
C

The second integrai shall be calculated in a similar manner: -7

I- *-5.. '..>;.

cos(2at - (a + h)) dt = Re f e -ai( at -( )) (A-5)

f (at a)(at - h) (at •a)(at -b)

-J, % % *

,-. '.5. -5,
V? .-" s .. " '-
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Convert (A-5) into a contour integral:

exp(i(2uz - (a + b)) d i~Rsfz
(az 7i Resa - b

where

f(z) =exp(i(2oz -(a + h))(A )

(az - a)(az - b)

Thie residue of f at a/a is

%

a i(a-b)

0
and at z =b/a is

6%~ N. %- *%

a i(b-a)X
7 e%

Z

Then, summing the residues and multiplying the result by 7i gives

2Tra ei~b e iah 21ra sin(a -h) (A-7) 0
b a 2i b- a

*Almost finished! Returning to Equation (A-i) gives:

a I cos(2at - (a + b)) dt 27 a 1i~ b)~
mn T (at a)(at - b) 2T (b -a)sna-)

sin(a -b)

(a-b)

%*

J,~A

0.. .W%
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Since

a -b U T- maT -naT G(T- (n m )T)

the coefficients are

a =sina(T- (n -m)T) (A-8)
nm a(T- (n -m)T)

which is the answer.

The matrix representation of the stretching/compression operator

is given by:

I sin a(cat -mT) sin o(t -nT) dt (A-9)
T a(cit -mT aj(t -nT)

for a > 0.

The calculation is straightforward and similar to the first example.

The answer is: ~ ~

a sin(aT~an - m)/ax) (A-10)
nm (ojT(an - m)/a)T

JI-

To check the answer, if a =1, then

ann = cn, m> 6 n

which is the identity operator.

%*xA.

%

%
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Finally, the representation of the combined delay and stretching

operator is obtained by evaluating

fsina(at -Tr mT) sina(t - nT) d
T ( at T mT) c(t - nT) d

using the method of residues, with the result: e.

sina(aT (an - )T/a)
am G(aT -(an -m)T/a)

%* %
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